• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 18
  • 6
  • 1
  • 1
  • Tagged with
  • 199
  • 146
  • 139
  • 74
  • 63
  • 46
  • 41
  • 40
  • 34
  • 28
  • 26
  • 23
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On the importance of feedback in the stream-fed high redshift universe

Kimm, Taysun January 2012 (has links)
Cosmological hydrodynamic simulations have shown that galaxies are fed by dense, cold gas streams at high redshift. However, the presence of such gas has never been observationally confirmed. Using the Horizon- MareNostrum simulation, I examined whether cold flows are detectable with low-ionisation metal absorption lines, such as C II 1334. It is concluded that due to their low metallicity and density, it is extremely difficult to prove/disprove the presence of cold flows using the metal absorption lines. Revisiting the acquisition of angular momentum in disc galaxies using high resolution simulations, I found that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum which is systematically and significantly higher (at minimum by a factor of 2) than that of the dark matter halo as a whole. Whereas cold streams directly deposit this large amount of angular momentum within a sphere of radius r~0.1 Rvir, dark matter particles easily pass through the central region, depositing their angular momentum over a much more spatially extended region. As a result, in our simulations neither the total specific angular momentum of the baryons nor its radial profile ever follows that of the virialised dark matter halo, contrary to what is typically assumed in the standard theory of disc galaxy formation. In order to better understand the formation of disc galaxies and the missing baryon problem in a LCDM universe, continuous, collective galactic winds are implemented. It is demonstrated that stellar feedback processes are able to suppress star formation by ~30% at z=3, compared to that from the run without feedback sources, but it still produces an unrealistic central peak in the rotation curve. Although inclusion of hypernovae further suppresses star formation, it is unable to quench the formation of low-angular momentum stars enough to remove the peaked rotation curves at high redshift. Finally, feedback from active galactic nuclei turns out to be effective at suppressing star formation in massive galaxies at 1<z<2, reproducing their observed number densities in the redshift range. However, further suppression of residual star formation is required to form quiescent galaxies at z=2.
22

The search for the highest redshift quasars using the Dark Energy Survey

Reed, Sophie January 2017 (has links)
Quasars are amongst the most luminous objects known in the Universe and thus can be observed out to large distances and correspondingly early times in the history of the Universe. Luminous quasars are powered by accretion of matter onto supermassive black holes (10⁶ - 10¹⁰M⊙) and are situated in the centre of some of the most massive galaxies and are a crucial test of massive galaxy and supermassive black hole assembly and evolution models - proving hard to recreate using simulations. As well as being of intrinsic interest, the spectra of quasars contain information about the state of the intergalactic medium (IGM) in the vicinity of the quasar, and also cosmologically distributed material in the foreground, via absorption lines due to the intervening material. This allows studies of the IGM at high redshift along different sight lines, providing insight into the metallicity, temperature and homogeneity of the Universe. This thesis discusses a new method of finding high redshift quasars using new multi wavelength data from the Dark Energy Survey, the VISTA Hemisphere Survey and Wide-Field Infrared Survey Explorer. The beginning of the thesis focusses on developing an automated selection code for z > 6 quasars, including the automatic rejection of foreground contaminating sources such as instrumental artefacts, asteroids, galactic stars and lower redshift quasars and galaxies. Following on from my first discovery of a z = 6.1 quasar in the DES and VHS data, I have developed a robust selection method that allows me to go straight from candidates to spectroscopy without needing additional photometric follow up. The method uses a grid of quasar models with a range of reddening and a series of brown dwarf spectral energy distribution models to derive a X² statistical likelihood of an object being a quasar and an associated photometric redshift. This differs from previous methods in that it allows for automatic rejection of brown dwarf stars without requiring further data. My selection delivers a ranked candidate list which down weights astrophysical contaminants and imaging artefacts. The thesis then discusses extending this method to higher redshift and the discovery of two quasars at z = 6.75 and z = 6.9. Included with this is a discussion about spectroscopic reduction of near IR data and the properties which can be derived from it. The final part of the thesis uses the quasars I have found to study their environment such as the IGM which they are embedded in, I have been developing a robust method for measuring their hydrogen near zone sizes that can be compared to simulations.
23

The structure and scale of the universe

Hoyle, Fiona January 2000 (has links)
We quantify the structure and scale of the Universe using redshift surveys of galaxies and QSOs and observations of Galactic open star clusters. We obtain the galaxy power spectrum from the Durham/UKST Galaxy Redshift Survey. By comparing the shape of the observed power spectrum to the APM real space power spectrum, we quantify the size of the redshift space distortions and find β = Ω(^0.6)/b=0.60±0.35. We also apply counts-in-cells analysis to the Durham/UKST and Stromlo-APM Surveys and measure the skewness directly out to 20h(^-1)Mpc. We find that the skewness measured from CDM models can only be reconciled with that of galaxies if bias is non-linear. We make predictions for the clustering in the 2dF QSO Survey by constructing mock catalogues from the Hubble Volume N-body simulation, with geometry, selection function and clustering matching those expected in the completed Survey. We predict that the correlation function will be reliably measured out to ~ 1, 000h(^-1)Mpc and the power spectrum out to 500h(^-1)Mpc. We measure the power spectrum from the 2dF QSOs observed by January 2000 and find it has a shape of F ~ 0.1. We also find little evolution in the clustering amplitude as a function of redshift. We obtain constraints on the cosmo- logical parameters Ωn and β by combining results from modeling geometric distortions introduced into the clustering pattern due to inconsistent cosmological assumptions and results from the QSO-mass bias. Finally, we consider the scale of the Universe. We check the calibration of the Cepheid Period-Luminosity relation using U,B,V and K'band imaging of Galactic Open Clusters containing Cepheids and measure the distance modulus to the LMC to be 18.51 ±0.10. However, we find anomalous colour-colour diagrams for two clusters and suggest that the effects of metallicity may be greater than previously considered.
24

Exploring galaxy evolution with luminosity functions across cosmic time

Elbert, Holly January 2016 (has links)
In this thesis I investigate galaxy evolution by measuring the luminosity functions of galaxies across a wide range in redshift. I measure the abundances of high redshift galaxies in deep HST imaging of the GOODS-North field from the CANDELS survey. I follow this evolution to lower redshift by measuring the luminosity functions of galaxies in ground-based imaging of the XMM-LSS field from the VIDEO survey with optical data from the CFHTLS. First, at high-redshift, I identify 22 candidate z &asymp; 7 and 6 candidate z &asymp; 8 − 9 galaxies. By comparing the number of candidate galaxies with those found in the GOODS-South field, I determine that cosmic variance is not the dominant source of uncertainty on the number counts. I constrain the Schechter parameters for the UV luminosity function at z &asymp; 7 and z &asymp; 8 − 9, finding evidence for evolution in the number density of high redshift galaxies. Next, I present the K<sub>s</sub>-band luminosity functions in the 1 degree<sup>2</sup> and 4.5 degree<sup>2</sup> overlaps between the VIDEO-XMM field and the CFHTLS-D1 and CFHTLS-W1 fields. I measure the luminosity functions with the 1/V<sub>max</sub> method over the range 0.2 &LT; z &LT; 3 in VIDEO-CFHTLS-D1, and over the range 0.2 &LT; z &LT; 1.5 in the shallower VIDEO-CFHTLS-W1 field. I find the evolution of these luminosity functions is best described by luminosity dependent density evolution, where the characteristic magnitude has dimmed at a constant rate since z = 3, while the density has increased since z = 3, first rapidly from z = 3 to z &asymp; 1.5 and then more slowly from z &asymp; 1.5 to z = 0.2. I measure a significant upturn at the faint end of the luminosity function at low redshift. Finally, I compare the VIDEO-CFHTLS-D1 and VIDEO-CFHTLS-W1 luminosity functions with predicted K-band luminosity functions from the Horizon-AGN simulation. I find both an over-prediction in the numbers of faint galaxies and an under-prediction in the numbers of bright galaxies, implying that the feedback from supernovae is insufficient while the feedback from AGN is over-sufficient.
25

Quasars at the high redshift frontier

Bosman, Sarah Elena Ivana January 2017 (has links)
In recent years the formation of primordial galaxies, cosmic metal enrichment, and hydrogen reionisation have been studied using both refined observations and powerful numerical simulations. High-redshift quasars have become a ubiquitous tool in the study of this era with more than 115 quasars now spectroscopically confirmed at z > 6.0. In this thesis, I use spectra of high-redshift quasars to provide improved observational constraints through a mixture of existing and new techniques. I first investigate the claim of neutral gas around the most distant known quasar, ULASJ1120+0641(J1120), with a cosmological redshift of z=7.1. Its spectrum shows a relatively weak Lyman-α emission line, which has been interpreted as evidence of absorption by neutral gas. Attributing this to a Gunn-Peterson damping wing has led to claims that the intergalactic medium is at least 10% neutral at that redshift. However, these claims rely on a reconstruction of the unabsorbed quasar emission. Initial attempts using composite spectra of lower-redshift quasars mismatched the CIV emission line of J1120, a feature known to correlate with Lyman-α and which is strongly blueshifted in J1120. I attempt to establish whether this mismatch could explain the apparently weak Lyman-α emission line. I find that among a C IV-matched sample the Lyman-α line of J1120 is not anomalous. This raises doubts as to the interpretation of absorbed Lyman-α emission lines in the context of reionisation. I then use a high quality X-Shooter spectrum of the same z=7 quasar to measure the abundances of diffuse metals within one billion years of the Big Bang. I measure the occurrence rates of CIV, CII, SiII, FeII and MgII, producing the first measurement at z > 6 for many of these ions. I find that the incidence of CIV systems is consistent with a continuing decline in the total mass density of highly ionized metals, a trend seen at lower redshifts. The ratio CII/CIV, however, seems to remain constant or increase with redshift, in line with predictions from models which include a decline of the ionising ultraviolet background. The evolution in MgII appears somewhat more complex; while the number density of strong systems continues to decline at high redshift,the number density of weak systems remains high and may even increase. This could signal an increase with redshift in the cross-section of low-ionisation metals. Large numbers of weak MgII systems are also seen at z∼2, suggesting they were already in place when reionisation was ending. I use this X-Shooter spectrum to study metal absorbers associated with the z=7 quasar itself. I find that one such absorber shows signs of only partially covering the line-of-sight, and investigate the possible implications for the quasar’s environment. Finally, I investigate the evolution of the intergalactic medium’s Lyman-α opacity using spectra of quasars at 5.7 < z < 7.1. I assemble a sample of 92 quasar spectra, more than 3 times larger than previous samples. The sample consists of quasars drawn from DES-VHS, SDSS and SHELLQs, new reductions of archival data, and new data. I develop methods to quantify the opacity distribution, providing measurements of the distribution function up to z=6.1. I find that the Lyman-α opacity evolves strongly with redshift. The scatter may be even larger than previously appreciated, posing a serious challenge for models of reionisation.
26

Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows

January 2012 (has links)
abstract: Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the evolution of the minihalo gas. Molecular coolants are important since they allow gas to cool below 10000 K. Therefore, I implement a primordial chemistry and cooling network that tracks the evolution and cooling from these species. I show that the shock from the galaxy outflow produces an abundance of coolants in the primordial gas which allows the gas to cool to below 10000 K. I also show that this interaction produces compact stellar clusters that are ejected from their parent dark matter halos. In Chapter 3 I look at the turbulent mixing of metals that occur between the minihalo and outflow. To do this, I develop a sub-grid model for turbulence that reproduces three primary fluid instabilities. I find that the metals from the outflow are well mixed throughout the minihalo gas. In addition, the metal abundance found roughly corresponds to the observed abundances in halo globular clusters. In Chapter 4, I conduct a suite of simulations that follow this interaction over a wide range of parameters. In almost all cases, the shocked minihalos form molecules and cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, I show that the unique properties of these clusters make them a prime observational target for study with the next generation of telescopes. Given the unique properties of these clusters there are reasons to suspect that their low-redshift counterparts are halo globular clusters. I outline this comparison in Chapter 5 and give my conclusions in Chapter 6. Finally, I summarize my current work in Chapter 7 and future extensions in Chapter 8. By the end, I hope to convince you that the interaction between a galaxy outflow and a primordial minihalo provides a formation pathway for present day halo globular clusters. / Dissertation/Thesis / Ph.D. Astrophysics 2012
27

High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

Volonteri, Marta, Reines, Amy E., Atek, Hakim, Stark, Daniel P., Trebitsch, Maxime 10 November 2017 (has links)
The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages <1 Gyr, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.
28

High redshift star-forming galaxies in absorption and emission

Quider, Anna Marie January 2011 (has links)
Galaxies in the redshift range 1 < z < 3 existed during the most vigorous period of star formation in the history of the Universe. In the past 15 years, large rest-frame UV spectroscopic samples of z ~ 3 star-forming galaxies have been assembled. However, this particular redshift range, the so-called Redshift Desert, has only begun to be characterized. Most studies involve low resolution, low signal-to-noise spectra because the small angular size (δ ≤ 1") and faintness (RAB = 24 - 25.5) of high redshift galaxies limit what can be accomplished with a reasonable investment of observing time, even using the world's largest optical telescopes. One way to circumvent these two issues is to study gravitationally lensed galaxies. The magnification boost (up to a factor of 30x) and morphological distortion of a high redshift galaxy by an intervening mass concentration allow for the study of the high redshift Universe in unprecedented detail. I present a detailed analysis of the rest-UV spectrum of two gravitationally lensed galaxies: the 'Cosmic Horseshoe' (zsys = 2.38115) and the 'Cosmic Eye' (zsys = 3.07331). The characterization of the stellar populations and the interstellar gas geometry, kinematics, and composition which I achieve is a preview of the type of information that will be available for unlensed high redshift galaxies with the next generation of optical telescopes. I probe the lower redshift end of the Redshift Desert with a study of Fe ii and Mg ii features in the rest-frame near-UV spectrum of 96 star-forming galaxies in the redshift range 1 < z < 2. Stacked spectra are used to explore average outflow and line profile trends with stellar mass and reddening. I also investigate the phenomenon of emission filling of absorption lines which has implications for the line strength and velocity offset of interstellar absorption lines. Individual galaxies are used to assess the range of outflow velocities as well as the prevalence of emission filling in galaxies from this epoch. This is the first large scale study of fine-structure emission from Feii in high redshift galaxies, both in stacked and individual galaxy spectra. An alternative to investigating galaxies by collecting their light is to study them as seen in absorption against a cosmic backlight, such as a quasar. The Sloan Digital Sky Survey, an imaging and spectroscopic survey which covers about one-quarter of the night sky, has collected many thousands of quasar spectra. I search ~ 44,600 of these spectra, up through Data Release 4, for Mg ii λλ2796,2803 absorption doublets. The final catalog includes ~ 16700 Mgii absorption line systems in the redshift range 0.36 ≤ z ≤ 2.28. Measurements of the absorption redshift and rest equivalent widths of the Mg ii doublet as well as select metal lines are available in the catalog. This is the largest publicly available catalog of its kind and its combination of large size and well understood statistics make it ideal for precision studies of the low-ionization and neutral gas regions of galaxies. I conclude this thesis by suggesting several avenues for extending the studies of high redshift star-forming galaxies presented herein.
29

A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE . II. THE BRIGHT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5

Yang, Jinyi, Wang, Feige, Wu, Xue-Bing, Fan, Xiaohui, McGreer, Ian D., Bian, Fuyan, Yi, Weimin, Yang, Qian, Ai, Yanli, Dong, Xiaoyi, Zuo, Wenwen, Green, Richard, Jiang, Linhua, Wang, Shu, Wang, Ran, Yue, Minghao 20 September 2016 (has links)
This is the second paper in a series on a new luminous z similar to 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z similar to 5. Combining. our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z similar to 5 quasar sample to date, with 99 quasars in the range of 4.7 <= z < 5.4 and -29 < M-1450 <= -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V-a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as alpha = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope beta = -3.58 +/- 0.24 and a fainter break magnitude M-1450(*) = -26.98 +/- 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z similar to 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.
30

Detection of Background Galaxy Clusters in the Local Volume Complete Cluster Survey for Weak Lensing Measurements

Domke, Sarah 15 May 2023 (has links)
No description available.

Page generated in 0.0479 seconds