• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 153
  • 69
  • 59
  • 39
  • 30
  • 13
  • 11
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 971
  • 205
  • 170
  • 137
  • 104
  • 82
  • 67
  • 64
  • 63
  • 60
  • 59
  • 58
  • 57
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Phase-field and reduced peridynamic theories for fracture problems

Cavuoto, Riccardo 11 November 2021 (has links)
Several aspects of fracture nucleation and growth in brittle porous ceramics and in thin films are investigated, through analytical, numerical modelling, and experimental validation. A mechanical experimental characterization has been developed for a porous ceramic, namely, a 3D apatite, characterised by an oriented porosity and used for biomedical applications. The ceramic is produced from wood, so that the resulting porosity evidences a multi-scale nature, a feature determining peculiar failure mechanisms and an unprecedented porosity/strength ratio. In particular, the material exhibits an exfoliation-type failure, resulting in a progressive loss in mechanical properties, occurring for compression tests parallel to the grains and for highly slender specimens. Similar cohesive-brittle behaviour is also found when the compression is applied in the direction orthogonal to the porous channels, regardless of the shape ratio of the specimen. An in-depth analysis of this response is performed by means of a phase-field model. After calibrating the model, stress-strain curves and fracturing patterns are accurately reproduced. Furthermore, the effects of multi-scale porosity on mechanical behaviour are determined. Various strategies available in the literature for evaluating the properties of porous materials are compared to the proposed phase-field approach. The results open new possibilities for the prediction and characterization of complex fracturing phenomena occurring in highly porous ceramics, so to facilitate medical applications as structural bone repair. An application of the peridynamic theory of continuum mechanics is developed to obtain a dimensional reduced formulation for the characterisation of through-thickness delamination of plates. The kinematic of the plate is carefully chosen to be composed of an absolutely continuous part and a zone where jumps in the displacements are allowed; in this way, the reduced form of the elastic bond-based peridynamic energy and the reduced Lagrangian are explicitly retrieved in a closed-form. The reduction generates a hierarchy of terms, characterizing the energy stored inside the plane element. A semi-analytical solution, obtained by means of a minimization procedure, is obtained for a test case and compared with finite element simulations. Despite the fact that the numerical model is fully three-dimensional (in other words, it is not reduced), this model leads to the same moment-curvature diagrams and nucleation/growth of the delamination surface found with the reduced formulation. Finally, the convergence of the proposed reduced model to local elastic theory at vanishing internal length is determined, so that a reduced-localized cohesive model for fracture is retrieved.
322

Characterization of isomeric states in neutron-rich nuclei approaching N = 28

Ogunbeku, Timilehin Hezekiah 08 December 2023 (has links) (PDF)
The investigation of isomeric states in neutron-rich nuclei provides useful insights into the underlying nuclear configurations, and understanding their occurrence along an isotopic chain can inform about shell evolution. Recent studies on neutron-rich Si isotopes near the magic number N = 20 and approaching N = 28 have revealed the presence of low-lying states with intruder configurations, resulting from multiple-particle, multiple-hole excitations across closed shell gaps. The characterization of these states involves measuring their half-lives and transition probabilities. In this study, a new low-energy (7/2−1) isomer at 68 keV in 37Si was accessed via beta decay and characterized. To achieve this, radioactive 37Al and 38Al ions were produced through the projectile fragmentation reaction of a 48Ca beam and implanted into a CeBr3 detector, leading to the population of states in 37Si. The 68-keV isomer was directly populated in the beta-delayed one neutron emission decay of implanted 38Al ions. Ancillary detector arrays comprising HPGe and LaBr3(Ce) detectors were employed for the detection of beta-delayed gamma rays. The choice of detectors was driven by their excellent energy and timing resolutions, respectively. The beta-gamma timing method was utilized to measure the half-life of the new isomeric state in 37Si. This dissertation also discusses other timing techniques employed to search for and characterize isomeric states following beta decay of implanted ions. Notably, the half-life of the newly observed (7/2−1) isomeric state in 37Si was measured to be 9.1(7) ns. The half-life of the previously observed closely-lying (3/2−1) state at 156 keV was determined to be 3.20(4) ns, consistent with previously reported values. Reduced ground-state transition probabilities associated with the gamma-ray decay from these excited states were in agreement with results obtained from shell model calculations. In addition to the investigation of isomeric states in 37Si, isomeric 0+ states in 34Si and 32Mg nuclei belonging to the N = 20 “island of inversion” were characterized and searched for, respectively. The isomeric 0+ state in 34Si was populated following the beta decay of implanted 34Mg ions and its 34Al daughter nucleus. Similarly, the 0+ state in 32Mg was searched for via the beta-delayed one neutron emission decay of implanted 33Na ions.
323

Vector Wavelet Transforms for the Coding of Static and Time-Varying Vector Fields

Hua, Li 02 August 2003 (has links)
Compression of vector-valued datasets is increasingly needed for addressing the significant storage and transmission burdens associated with research activities in large-scale computational fluid dynamics and environmental science. However, vector-valued compression schemes have traditionally received few investigations within the data-compression community. Consequently, this dissertation conducts a systematic study of effective algorithms for the coding of vectorvalued datasets and builds practical embedded compression systems for both static and timevarying vector fields. In generalizing techniques from the relatively mature field of image and video coding to vector data, three critical issues must be addressed: the design of a vector wavelet transform (VWT) that is amenable to vector-valued compression applications, the implementation of vector-valued intraframe coding that enables embedded coding, and the investigation of interframe-compression techniques that are appropriate for the complex temporal evolutions of vector features. In this dissertation, we initially invoke multiwavelets to construct VWTs. However, a balancing problem arises when existing multiwavelets are applied directly to vector data. We analyze extensively this performance failure and develop the omnidirectional balancing (OB) design criterion to rectify it. Employing the OB principle, we derive with a family of biorthogonal multiwavelets possessing desired balancing and symmetry properties and yielding performance far superior to that of VWTs implemented via other multiwavelets. In the second part of the dissertation, quantization schemes for vector-valued data are studied, and a complete embedded coding system for static vector fields is designed by combining a VWT with suitable vector-valued successive-approximation quantization. Finally, we extend several interframecompression techniques from video-coding applications to vector sequences for the compression of time-varying vector fields. Since the complexity of temporal evolutions of vector features limits the efficiency of the simple motion models which have been successful for natural video sources, we develop a novel approach to motion compensation which involves applying temporal decorrelation to only low-resolution information. This reduced-resolution motion-compensation technique results in significant improvement in terms of rate-distortion performance.
324

SHORT - RANGE ORDER IN THE NEMATIC PHASE OF REDUCED SYMMETRYTHERMOTROPIC MESOGENS

Chakraborty, Saonti 06 December 2013 (has links)
No description available.
325

REDUCED ORDER MODELING OF FLOW OVER A NACA 0015 AIRFOIL FOR FUTURE CONTROL APPLICATION

Sullivan, Taylor D. 11 August 2014 (has links)
No description available.
326

ORGANIC/INORGANIC HYBRID COATINGS FOR ANTICORROSION APPLICATIONS

ALRASHED, MAHER M. January 2017 (has links)
No description available.
327

Reduced Order Modeling of Dynamic Systems for Decreasing Computational Burden in Uncertainty Quantification

Cohn, Brian E. 12 October 2018 (has links)
No description available.
328

A Finite Element Investigation of Non-Orthogonal Moment Connections in Steel Construction

Wilson, Kevin E. January 2015 (has links)
No description available.
329

A Method for Determining Body Weight Replacement Load during Squat Exercise in Weightlessness

Mummidivarapu, Satya Sri January 2015 (has links)
No description available.
330

Modal analysis of electric motors using reduced-order modeling

Mathis, Allen, MATHIS 17 June 2016 (has links)
No description available.

Page generated in 0.0225 seconds