• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Redução de codimensão de imersões regulares

Gomes, José Nazareno Vieira 15 September 2008 (has links)
Made available in DSpace on 2015-04-22T22:16:04Z (GMT). No. of bitstreams: 1 Jose Nazareno Vieira Gomes.pdf: 449205 bytes, checksum: ed034dfcd18d705f7d20d12e963faffc (MD5) Previous issue date: 2008-09-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Consider immersion (Expressão Matemática) dimensional manifold Mn in a manifold of constant secctional curvature c. Let N(x) be the first normal space of f in x 2 M, that is the subspace of the normal space that is generate to image of second form fundamental of f in x. We say that we can reduce the codimension of f to k, with (Expressão Matemática), if exists a submanifold L of Qc (n + k)-dimensional totally geodesic such that (Expressão Matemática), and f is 1-1-regular if the first normal space have constant dimension 1. The objective of this work is to give a detailed exhibition of results obtained by Lúcio Rodriguez and Renato Tribuzy in "Reduction of Codimension of Regular Immersions", published in Mathematische Zeitschrift in the year of 1984, that permit to reduce the codimension of 1-1-regular. / Considere uma imersão (Expressão Matemática) de uma variedade n-dimensional Mn em uma variedade de curvatura seccional constante c. Seja N(x) o primeiro espaço normal de f em x 2 M, isto é, o subespaço do espaço normal que é gerado pela imagem da segunda forma fundamental de f em x. Diz-se que se pode reduzir a codimensão de f para k, com (Expressão Matemática), se existe uma subvariedade (n+k)-dimensional L de Qc totalmente geodésica e tal que (Expressão Matemática) regular se o primeiro espaço normal tem dimensão constante 1. O objetivo deste trabalho é dar uma exposição detalhada de resultados obtidos por Lúcio Rodriguez e Renato Tribuzy em "Redução de Codimensão de Imersões Regulares", publicado em Mathematische Zeitschrift no ano de 1984, que permitem reduzir a codimensão de imersões 1-1-regulares.
2

Redução de condimensão de imersões regulares no espaço Euclidiano

Valente, Ana Acácia Pereira 19 December 2003 (has links)
Made available in DSpace on 2015-04-22T22:16:13Z (GMT). No. of bitstreams: 1 Ana Acacia Pereira Valente.pdf: 221896 bytes, checksum: f7a5ffc2646f76d06002549f557bd363 (MD5) Previous issue date: 2003-12-19 / The work of this essay is to make a clear on detailed exposition of the two theorems of the article of Lúcio Rodriguez and Renato Tribuzy on the Reduction of Codimension of Regular Immersions in the space of constant curvature c. We show that if M is a compact and connected manifold, of dimension n, and is an immersion (formula) regular, that is, when the first normal space N generated by image of the second fundamental form has constant dimension 1, then we can reduce the codimension of the immersion to 1. Other result important in the work show that if M is complete, connected with non-negative Ricci curvature, then f is a cylinder over a curve our we can reduce the codimension to 1 and f(M) is the boundary of a convex set in an a±ne subspace of (formula). / Este trabalho tem como finalidade apresentar uma exposição clara e detalhada de dois dos teoremas apresentados no artigo de Lúcio Rodriguez e Renato Tribuzy sobre Redução de Codimensão de Imersões Regulares em Espaços de Curvatura Constante c. Mostra-se que se tivermos uma variedade compacta e conexa M, de dimensão n, e uma imersão (formula) regular, isto é, quando a dimensão do primeiro espaço normal N gerado pelas imagens da segunda forma fundamental tem dimensão constante igual a 1, então podemos reduzir a codimensão da imersão para 1. Outro resultado importante neste trabalho é o fato de que se a variedade é apenas completa, conexa e com curvatura de Ricci não-negativa, então a imersão será um cilindro sobre uma curva, do contrário, podemos reduzir a codimensão para 1 e nossa imersão será o bordo de um corpo convexo em um subespaço (formula).

Page generated in 0.1343 seconds