• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 31
  • 22
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 12
  • 9
  • 7
  • 5
  • 3
  • Tagged with
  • 597
  • 348
  • 169
  • 156
  • 111
  • 94
  • 68
  • 59
  • 52
  • 50
  • 49
  • 48
  • 42
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Antecedent Geologic Controls on the Distribution of Oyster Reefs in Copano Bay, Texas

Piper, Erin Alynn 2010 May 1900 (has links)
Copano Bay is a shallow (< 2-3 m), microtidal estuary in south central Texas. In an effort to both determine the distribution as well as investigate the controls on the distribution of oyster reefs, a geophysical survey of Copano Bay was conducted in June and July 2007. Surficial sediment analysis confirms that the recent sedimentation in Copano Bay is comprised of mostly estuarine mud with little sand or shell, large extents of oyster reefs and smaller areas of sand. Seismic stratigraphy analyses verify that the first oyster reefs in Copano Bay formed atop topographic highs in the Pleistocene surface. About 6 ka, sea level rise slowed to near its present rate and sediment supply decreased tremendously to Copano Bay decreasing the amount of suspended sediment. The first oyster reefs began forming around this time using these fluvial terraces as suitable substrate. Once the initial reefs were established, additional reefs began forming atop these initial reefs, or on the eroded shell hash material from the initial reefs. During this time of slow sea level rise and low sediment input to the bay, oyster reefs thrived and reef and shell hash material covered a majority of the bay surface. Once climate change increased sediment input to the bay, the reefs began to decrease in size due to siltation. The reefs have continued to decrease in size causing a 64 percent reduction in oyster reef and shell hash area from approximately 4.8 ka to today.
172

Automated Recognition and Classification of Coral Reefs on Seafloor off Kenting area

Tsao, Shih-liang 01 September 2008 (has links)
The advantages that a side-scan sonar can offer include large-scale survey areas and high-resolution imagery which can provide the detection and positioning of underwater targets effectively. The purpose of image analysis, classification and positioning in this research was presented by the development of an automated recognition and classification system based on sonographs collected off Kenting area. Major components of the system include gray level co-occurrence matrix method, Baysian classification and cluster analysis. The sonograph classified by the automated recognition and classification system was split into two stages. The first stage divided the seafloor into three categories: (1) Rocky seafloor. (2) Sandy seafloor. (3) Acoustic shadow seafloor. Based on the characteristics of the rocky seafloor, the rocky seafloor was subdivided into five types in the second stage: (1) Flank reef and small independent reef. (2) Smooth reef. (3) Small coral on reef. (4) Coral on independent reef. (5) Large coral on reef. Analysis and proof of the system was conducted by underwater photographs collected off Kenting area in August 4, to 6, 2004. The identification accuracy of the first stage can reach 93% in Shiniuzai area. The characteristic features selected in this research (i.e., entropy and homogeneity) for the classification of various coral reef seafloors was proved adequate and the results was described in map within a Geographic Information System in the second stage. The results of this research illustrated that the rocky area identified in Shiniuzai was 98,863 m2. Due to image resolution restrictions, only 62,199 m2 of the total rocky area could be defined and classified properly. Among them, the flank reef and small independent reef covered an area of 15,954 m2 (26.3%); the smooth reef covered 3,133 m2 (5.0%); the small coral on reef covered 8,021 m2 (12.8%); the coral on independent reef covered 25,504 m2 (40.7%) and the large coral on reef covered 9,587 m2 (15.3%). Key words:side scan sonar,coral reef,gray level co-occurrence matrix
173

Patterns of association and interactions between juvenile corals and macroalgae in the Caribbean /

Slingsby, Shauna N. January 2003 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2003.
174

The value of Fijian coral reefs by nonusers

Fonseca, Carolyn E. January 2009 (has links)
Thesis (Ph.D)--Public Policy, Georgia Institute of Technology, 2010. / Committee Chair: Noonan, Douglas S.; Committee Co-Chair: Norton, Bryan; Committee Member: Bowman, Kirk; Committee Member: Fox, Mary F. Part of the SMARTech Electronic Thesis and Dissertation Collection.
175

The global impact of climate change on fish

Crawley, Natalie Elizabeth January 2013 (has links)
Climate change is a global issue and the effects on fish populations remain largely unknown. It is thought that climate change could affect fish at all levels of biological organisation, from cellular, individual, population and community. This thesis has taken a holistic approach to examine the ways in which climate change could affect fish from both tropical, marine ecosystems (Great Barrier Reef, Australia) and temperate, freshwater ecosystems (non-tidal River Thames, Britain). Aerobic scope of coral reef fish tested on the Great Barrier Reef was significantly reduced by just a 2°C rise in water temperature (31, 32 and 33°C, compared to the current summer mean of 29°C) due to increased resting oxygen consumption and an inability to increase the maximal oxygen uptake. A 0.3 unit decline in pH, representative of ocean acidification, caused the same percentage loss in aerobic scope as did a 3°C warming. Interfamilial differences in ability to cope aerobically with warming waters will likely lead to changes in the community structure on coral reefs with damselfish replacing cardinalfish. Concerning Britain, there is evidence of gradual warming and increased rainfall in winter months over a 150 year period, suggesting that British fish are already experiencing climate change. It was evident from an analysis of a 15 year dataset on fish populations in the River Thames, that cyprinid species displayed a different pattern in biomass and density to all the non-cyprinid fish population, suggesting that there will be interfamilial differences in responses to climate change. Using a Biological Indicator Approach on the three-spined stickleback, Gasterosteus aculeatus, a 2°C rise in water temperature resulted in a stress response at the cellular and whole organism level. A 6°C rise in temperature resulted in a stress response at the biochemical level (higher cortisol and glucose concentrations), cellular level (higher neutrophil: lymphocyte ratio) and whole organism level (higher ventilation rate and lowered condition factor, hepatosomatic index and growth). G. aculeatus is considered to be temperature tolerant; therefore these results indicate that climate change may prove to be stressful for more temperature-sensitive species. This study has demonstrated that climate change will have direct effects on fish populations, whether they are in temperate regions such as Britain or in tropical coral reefs, but with strong interfamilial differences in those responses.
176

Endolithic algae in Barbados reef corals

Roberts, Madeleine. January 1980 (has links)
No description available.
177

Effects of eutrophication on juvenile scleractinian corals

Wittenberg, Mark January 1991 (has links)
This study investigates effects of eutrophication on settlement, abundance, mortality and community structure of soleractinian corals on fringing reefs on the west coast of Barbados, W.I. Juvenile abundance was lower, but juvenile size larger, on eutrophic than less eutrophic reefs. The lower abundance results at least in part from a higher juvenile mortality on eutrophic reefs. Algae were more abundant and grazers (Diadema antillarum and herbivorous fish) less abundant on eutrophic reefs. Juvenile community structure on all reefs, and adult community structure on eutrophic reefs, was dominated by type 1 corals (high recruitment, high natural mortality). Type 2 corals (low recruitment, low natural mortality) were common in adult communities on less eutrophic reefs. Settlement of coral recruits on artificial substrates was lower on more eutrophic reefs.
178

Biological patterns and processes of glass sponge reefs

Chu, Jackson Wing Four Unknown Date
No description available.
179

Recruitment and assemblage structure of reef fish in Barbados, W.I.

Tupper, Mark January 1989 (has links)
No description available.
180

Spawning and spatial movement in the bluehead wrasse (Thalassoma bifasciatum) at Barbados, West Indies

Southey, Katherine January 1992 (has links)
This study investigates the characteristics and use of spawning sites by the bluehead wrasse Thalassoma bifasciatum in Barbados, and movements of wrasses from source reefs to proximate and isolate recipient reefs. Pair spawning rate increased with increasing projection height; group spawning rate increased with increasing proximity to the downcurrent reef edge. Daily group spawning rates, but not pair-spawning rates, were higher when daily current speeds were lower, suggesting that fertilisation rates in group spawns may be more sensitive to current speed than fertilisation rates in pair spawns. Migration rate to isolated reefs was 16% that to proximate reefs. Immigration rate to recipient reefs decreased with increasing distance from the source reef and increased with increasing population density on the source reef. Immigration rates to proximate reefs were phase, sex, and size-specific, and were strongly influenced by phase, sex, and size-specific differences in home range size of wrasses. Immigration to isolated reefs was also phase and sex-specific. (Abstract shortened by UMI.)

Page generated in 0.1616 seconds