• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation d'écoulements fluides en milieu encombré d'obstacles / Modeling fluid flows in obstructed media

Martin, Xavier 24 November 2015 (has links)
On s'intéresse dans ce document à la modélisation d'écoulements compressibles en conduite unidimensionnelle (1D) à section variable et dans des domaines bi ou tridimensionnelles encombrés d'obstacles. Le travail est motivé par la modélisation d'écoulements dans les circuits de refroidissement de réacteurs à eau pressurisée (REP). Ainsi ce travail a pour objectif de proposer une nouvelle formulation pour de tels écoulements. L'idée de base consiste a utiliser une formulation intégrale sur la base des équations aux dérivées partielles. Le système de lois de conservation associé aux équations d'Euler (masse, dynamique et énergie) est examiné.Le premier chapitre examine le cas de conduite 1D à section continue ou discontinue. La formulation intégrale est présentée et les résultats numériques sont comparés avec (i) l'approche Well-Balanced et (ii) la solution de référence obtenue sur maillage très fin.Les second et troisième chapitres examinent la modélisation d'écoulements compressibles dans des domaines contenant de nombreux tubes. La formulation intégrale est donnée, et les schémas numériques présentés, afin de gérer les interfaces fluide/fluide et les parois. Les schémas peuvent être explicites (chapitre 2), ou implicites (chapitre 3). Quelques cas tests analytiques sont présentés. On se concentre sur l'écoulement d'un fluide abordant une zone de tubes alignés de petite taille. Ici encore, la comparaison est faite avec la référence fluide; les résultats sont également comparés avec ceux issus de l'approche équilibre classique, et ceux associés à la formulation intégrale unidimensionnelle présentée dans le premier chapitre. / This document focuses on the modeling of compressible flows in one-dimensional (1D) pipes with variable cross-section, and in two or three-dimensional domains containing many small obstacles. The basic motivation is urged by the modeling of flows in the coolant circuit of pressurised water reactors (PWR). Thus this work aims at providing a new formulation for such a variety of flows. The basic idea consists in using an integral approach that is applied to the governing set of partial differential equations. Here the keystone is the conservative Euler set of equations, including mass, momentum and energy balance for any equation of state.Hence, the first chapter investigates the case of one-dimensional pipes with continuous or discontinuous cross-section. Once the 1D+ integral formulation has been presented, numerical results are compared with : (i) the classical Well-Balanced (WB) approach, and (ii) the reference solution obtained with a multi-dimensional code with huge mesh refinement.The second and third chapters provide some new insight on the numerical modeling of compressible flows in domains obstructed with many tubes. The integral formulation is derived, and numerical schemes are detailed, in order to handle fluid/fluid interfaces and wall boundaries. Schemes may be explicit (chapter 2), or implicit (chapter 3). A few analytic test cases are investigated. Focus is made on the flow incoming a region containing many tiny and aligned tubes. Here again, a comparison with the reference "fluid" solution is achieved; results are also compared with those arising from the WB approach, and with those coming from the 1D+ integral approach proposed in the first chapter.

Page generated in 0.0696 seconds