• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen, nitrogen and syngas enriched diesel combustion

Christodoulou, Fanos January 2014 (has links)
On-board hydrogen and syngas production is considered as a transition solution from fossil fuel to hydrogen powered vehicles until problems associated with hydrogen infrastructure, distribution and storage are resolved. A hydrogen- or syngas-rich stream, which substitutes part of the main hydrocarbon fuel, can be produced by supplying diesel fuel in a fuel-reforming reactor, integrated within the exhaust pipe of a diesel engine. The primary aim of this project was to investigate the effects of intake air enrichment with product gas on the performance, combustion and emissions of a diesel engine. The novelty of this study was the utilisation of the dilution effect of the reformate, combined with replacement of part of the hydrocarbon fuel in the engine cylinder by either hydrogen or syngas. The experiments were performed using a fully instrumented, prototype 2.0 litre Ford HSDI diesel engine. The engine was tested in four different operating conditions, representative for light- and medium-duty diesel engines. The product gas was simulated by bottled gases, the composition of which resembled that of typical diesel reformer product gas. In each operating condition, the percentage of the bottled gases and the start of diesel injection were varied in order to find the optimum operating points. The results showed that when the intake air was enriched with hydrogen, smoke and CO emissions decreased at the expense of NOx. Supply of nitrogen-rich combustion air into the engine resulted in a reduction in NOx emissions; nevertheless, this technique had a detrimental effect on smoke and CO emissions. Under low-speed low-load operation, enrichment of the intake air with a mixture of hydrogen and nitrogen led to simultaneous reductions in NOx, smoke and CO emissions. Introduction of a mixture of syngas and nitrogen into the engine resulted in simultaneous reductions in NOx and smoke emissions over a wide range of the engine operating window. Admission of bottled gases into the engine had a negative impact on brake thermal efficiency. Although there are many papers in the literature dealing with the effects of intake air enrichment with separate hydrogen, syngas and nitrogen, no studies were found examining how a mixture composed of hydrogen and nitrogen or syngas and nitrogen would affect a diesel engine. Apart from making a significant contribution to existing knowledge, it is 3 believed that this research work will benefit the development of an engine-reformer system since the product gas is mainly composed of either a mixture of hydrogen and nitrogen or a mixture of syngas and nitrogen.
2

Etude expérimentale de la stabilité d’une flamme dans une chambre de combustion aéronautique par recirculation de gaz brûlés et par ajout d’hydrogène / Experimental study of the stability of a flame in an aircraft combsution chamber by burnt gas recirculation and the addition of hydrogen

Burguburu, Joseph 11 January 2012 (has links)
Les réglementations sur les NOx émis par les avions sont sévères. Les techniques les réduisant ont des inconvénients. Pour les supprimer, deux pistes sont explorées. La première modifie l'architecture des chambres de combustion et les stabilise par une cavité. La seconde dope le kérosène au ralenti.Peu d'information est disponible sur les mécanismes de stabilisation et sur la structure de flamme des Trapped Vortex Combustor. Pour y remédier, un TVC est construit. L'étude de l'écoulement à froid ainsi que l'étude temporellement résolue de la flamme, mettent en avant les éléments stabilisateurs et déstabilisateurs. L'impact de la structure de flamme sur les émissions est évalué.La seconde partie porte sur l'effet de l'ajout d'hydrogène et de gaz de reformeur dans une chambre conventionnelle. Malgré une légère augmentation des émissions de NOx, l'ajout de composés hydrogénés réduit fortement les émissions de CO, augmente la stabilité et réduit la limite d'extinction pauvre. / Environmental standards on aircraff NOx emissions are strict. Technics for reducing them have drawbacks. Two options are explored in this study to supress them. The first one is to fundamentally change the current combustion chamber architecture, to stabilize them by a cavity, the second, to dope fuel at idle.Little information on the mechanisms of stabilization and on the flame structure on Trapped Vortex Combustor is available. To remedy this, a TVC is built. The stabilizing ans destabilizing parameters are pointed out by the cold flow investigation and the temporally resolved study of the combustion. The impact of the flame structure on pollutant emissions is also considered.The second part of this stud, deals with the addition of pure hydrogen an of reformer gas in a conventional combustuion chamber. Despite a slight increase in NOx emissions, the addition of hydrogenated compounds reduces drastically CO emissions, increases the flame stability and reduces the LBO limit.

Page generated in 0.1931 seconds