• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics study on the Performance of A Pilot-Scale RCO(Regenerative Catalytic Oxidizer)for Destrution of Destrution of Gas-borne VOCs

han, Liu-yen 26 July 2007 (has links)
In this study, a two-bed electrically-heated regenerative catalytic oxidizer (RCO) was used to test the destruction characteristics in burning toluene-borne air streams. The RCO contained two 0.152 m¡Ñ0.14 m¡Ñ1.0 m (L ¡Ñ W ¡Ñ H) beds, both packed with gravel particles with an average diameter of around 0.0111 m and a height of up to 0.875 m with a void fraction of 0.42 in the packed section. In addition, in each column catalytic particles with an average diameter of around 0.008 m were packed over the gravel particles to a height of 0.125 m. Gas temperature rise and the gas pressure drop over the beds were also studied. Experimental results reveal that, with a valve shifting time (ts) of 1.5 min, superficial gas velocities (Ug) of 0.39 and 0.86 m/s (evaluated at an influent air temperature of around 30 oC) and preset maximum destruction temperatures (TS) of 300-400 oC, only around 25% of the influent toluene (Co = 200-400 ppm) was thermally destructed with no catalyst in both beds. With the cartalyst packings and operation conditions of Ug = 0.39 m/s and Co = 200-800 ppm, destruction efficacies of around 80.9¡Ó0.8, 94.6¡Ó1.8, and 98.1¡Ó0.2 % were observed, respectively, at TS of 250, 300, and 400 oC. At Ug = 0.86 m/s and Co = 200-800 ppm, destruction efficacies of around 69.7¡Ó3.1, 93.9¡Ó1.7, and 97.8¡Ó0.4 % were observed, respectively, at TS of 250, 300, and 400 oC. It is suggested that operation conditions with Ug = 0.39-0.86 m/s (equivalent to empty-bed-residence times of 0.29-0.64 s for the gas at 30oC through the catalyst beds) and TS = 300 oC are suitable for the destruction of around 98% of the influent air with 200-800 ppm toluene. Gas temperature rises of 21 and 26 oC, respectively, were found for Ug = 0.39 and 0.86 m/s with TS = 300 oC. The Ergun equation was found to suffice in the estimation of the pressure drop when the gas flowed over the packing beds.
2

Regenerative Thermal Oxidation of Volatile Organic Compounds(VOCs) in Air Streams

Lee, wei-sehn 22 July 2000 (has links)
Performance studies on the treatment of VOCs in air streams by a pilot-scale regenerative catalytic oxidizer (RCO) and a full-scale regenerative thermal oxidizer (RTO) were conducted. The pilot-scale RCO was constructed with two 20-cm x 200-cm (inside diameter x packing height) regenerative beds packed with gravel (average particle size = 1.25 cm) used as the thermal regenerative solid material. Experimental results indicate that destruction efficiencies of 97 and 90%, respectively, were obtained for methyl ethyl ketone and toluene at a superficial gas velocity of 0.372 m/s (evaluated at 25¢J) and a maximum bed temperature of 400¢J. It was estimated that an electrical thermal energy of approximately 84 kWh was required for treating 1,000 m3 of the waste air stream by the RCO. The full-scale RTO was constructed with two regenerative beds of 100-cm square x 200-cm height packed with the gravel used in the RCO. A paint solvent containing methyl ethyl ketone, ethyl benzene, xylenes, and ethyl acetate was used for the target VOCs. Experimental results indicate that, at a superficial gas velocity of 0.372 m/s (evaluated at 25¢J), VOC destruction efficiencies of 84, 92, 95 and 98% were obtained for the beds at temperature ranges of 200-300, 300-500, 400-700, and 500-700¢J. These conditions corresponded to empty gas retention times of 1.07, 0.85, 0.41, and 0.39s, respectively, for the cited temperature ranges. Finally, it was estimated that electrical watts of approximately 0.10, 0.45, 1.78, 2.43 kWh were required for treating 1,000 m3 of the waste air stream, respectively, at bed temperature ranges of 200-300, 300-500, 400-700, and 500-700¢J.
3

Treatment of Gaseous Volatile Organic Compounds by Catalytic Incineration and a Regenerative Catalytic Oxidizer

Huang, Shih-Wei 29 June 2008 (has links)
Volatile organic compounds (VOCs) can detrimentally affect human health directly and indirectly. However, the main environmental concern of VOCs involves the formation of smog. In the presence of nitrogen oxides, VOCs are the precursors to the formation of ground level ozone. Isopropyl alcohol (IPA) and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs. Catalytic incinerations and a regenerative catalytic oxidizer (RCO) were adopted to decompose VOCs herein. Various catalysts were prepared and developed in this study. The screening test of catalytic activity and the influences of the operational parameters on VOCs removal efficiencies were widely discussed through catalytic incinerations of VOCs. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an RCO to investigate their performance in VOCs oxidation and RCO operations. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it has the excellent performance in incineration efficiency and economic efficiency. The achievements of this study are summarized as follows: (1) Treatment of isopropyl alcohol (IPA) using ceramic honeycomb(CH) catalyst The eighteen ceramic honeycomb catalysts we prepared by various methods (co-precipitation, wet impregnation and incipient impregnation), various metal weight loadings (5 ~ 20 wt %), and various metals (Cu and CuCe) were used in the experiment. The results indicate that 20 wt%CuCe/(CH) catalyst prepared by wet impregnation had the best performance in CO2 yield because TC50 and TC95 were 245¢J and 370¢J, respectively, under the following operating conditions; a space velocity of 12000 hr-1, an inlet IPA concentration of 1600 ppm, an oxygen concentration of 21%, and a relative humidity of 25%. Given the operational parameters of IPA oxidation experiments, the CO2 yields increased with higher temperature and oxygen concentration, but decreased with inlet IPA concentration, space velocity and the relative humidity increased. Moreover, the stability test results show that the 20 wt%CuCe/(CH) catalyst had excellent stability. (2) Treatment of toluene using molecular sieve(MS) catalyst Molecular sieve catalysts with various metals (Cu, Co, Mn, CuMn, CuCo, MnCo) and various loadings (5~10 wt %) were produced by wet impregnation to treat toluene. The results indicate that 10 wt%CuCo/(MS) had the best performance in toluene conversion because T50 and T95 were 295¢J and 425¢J, respectively, at an influent concentration of toluene of 900 ppm, an oxygen concentration of 21%, a space velocity of 12000 hr-1, and a relative humidity of 26%. The conversions of toluene increased with the reaction temperature and the influent concentration of oxygen, but decreased as the initial concentration of toluene and the space velocity increased. Moreover, we did not find any decay between the fresh and used catalysts using SEM and EDS. (3) Treatment of isopropyl alcohol (IPA) using Cu/(CH) and CuCo/(CH) catalysts We used the 20 wt% CuCo/(CH) and 20 wt% Cu/(CH) catalysts in a pilot RCO to test IPA oxidation performance under various conditions. The best catalyst was selected, and the economic efficiency of RCO and the phenomenon of RCO operations were more widely discussed. The results demonstrate that 20 wt% CuCo/(CH) catalyst performed well in an RCO because it was effective in treating IPA, with a CO2 yield of up to 95%. It also had the largest tolerance of variations in inlet IPA concentration and gas velocity. The 20 wt% CuCo/(CH) catalyst in an RCO also performed well in terms of TRE, pressure drop and selectivity to CO2. The thermal recovery efficiency (TRE) decreased as gas velocity increased. The temperature difference (Td) and pressure drop increased with gas velocity and heating zone temperature. The TRE range was from 87.8 to 91.2 % and the Td ranged from 22.1~35.1¢Junder various conditions. Finally, the stability test results indicate that the 20 wt% CuCo/(CH) catalyst was very stable at various CO2 yields and temperatures. (4) Treatment of toluene using CuCo/(CH) catalysts with various carriers In this work, three catalysts (10 wt%CuCo/(G)¡B10 wt%CuCo/(MS) and 20 wt% Cu/(CH)) were prepared by wet impregnation, and used in an RCO to test their performance in incineration efficiency and economic efficiency under various operational conditions. Then the best catalyst was selected and the phenomenons of RCO operations were further investigated. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it is effective in treating toluene with a toluene conversion of up to 95% at the heating zone temperature (Tset) = 400¢J under various conditions. The 10 wt% CuCo/(G) catalyst had the greatest tolerance against the effects of inlet toluene concentration and gas velocity, and exhibited the best performance in terms of TRE , Td and pressure drop. The TRE range was from 90.2 to 92.9 % and Td ranged from 18.2 to 30.9¢J under various conditions at Tset = 300~400¢J. Moreover, when 10 wt% CuCo/(G) catalyst was used in an RCO, the results demonstrate that (1) high selectivity to CO2 ; (2) decrease in TRE and increase in Td as increasing the shifting time; (3) an insignificant effect of shifting time on pressure drop and (4) excellent stability of 10 wt% CuCo/(G) catalyst in a long period test.
4

The Study on Regenerative Catalytic Oxidizer of Volatile Organic Compounds in Soil

Lee, Rong-chang 22 July 2009 (has links)
Oil storage tanks and their pipelines are mostly constructed under the ground. If the leaches are occurred, the soil pollution and the contamination of groundwater quality will influenced seriously. The soil of oil polluted sites is usually containing the huge amounts of volatile organic compounds (VOCs) and other organics. These VOCs is uncomfortable on physical body when they spread into atmosphere not only to cause the harm of human health but also to react into photochemical smog. Besides, the VOCs are probably reacting with nitrogen oxides into the problems of high concentrations of ozone. In this study, we used a regenerative catalytic oxidizer (RCO) to deal with VOCs in soil of the oil polluted sites. The RCO system was packed with self-made catalyst of 20 wt%CuMn/£^-Al2O3. Experimental results revealed 90¡Ó5% of the influent VOCs (C0=450-10,000 ppm) was thermally destruction with no catalyst in beds operated with a valve shifting time (ts) of 2 min, superficial gas velocities (Ug) of 0.37 m/s (evaluated at an influent air temperature of around 30¢J) and present maximum destruction temperature (TS) of 800-900¢J. With the catalyst packings and operation conditions of Ug=0.37 m/s and C0=450~10,000 ppm, the destruction efficiency of 93.35 and 96.5% were observed, respectively in average at TS of 600 and 650¢J. When Ug=1.11 m/s and C0=450-10,000 ppm, the destruction efficiency of 87.51 and 93.75% were observed, respectively in average at TS of 600 and 650¢J. The destruction efficiency of RCO is high at higher influent concentration of VOCs and low gas velocities at TS=600-650¢J.
5

Treatment of Volatile Organic Compounds by a Regenerative Catalytic Oxidizer

Lin, Chien-hung 24 July 2009 (has links)
Abstract Isopropyl alcohol¡]IPA¡^and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs. In first step catalytic incineration was adopted to decompose IPA and toluene in laboratory, and the second step for a pilot-scale regenerative catalytic oxidizer ¡]RCO¡^were adopted to decompose mixture VOCs in real soil herein. The screening test of catalytic activity and the influences of the operational parameters on IPA and toluene removal efficiencies were widely discussed through catalytic incinerations of IPA and toluene in laboratory. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an pilot scale RCO as follows to investigate their performance in VOCs oxidation and RCO operations in THC removal of contamination soils. The achievements of this study are summarized as follows: ¡]1¡^Cu/Mn and Cu/Co gravel catalytic incinerations of isopropyl alcohol The results demonstrated that 10 wt% Cu0.6Co0.4 catalyst was the most effective because the CO2 yield reached 95 % under the following operating conditions; a temperature of 425oC, an inlet IPA concentration of 2500 ppm, an oxygen concentration of 21%, and a space velocity of 13500 hr-1. Additionally, the stability test results indicated that the 10 wt% Cu0.6Co0.4 catalyst exhibited excellent stability at both low and high conversion of IPA. ¡]2¡^20% Cu/Mn aluminum oxide catalytic incinerations of toluene The conversion for toluene reached 95% when the Cu/Mn catalyst was used with a metal ratio of 1:1 and 20% loading at 350¢XC, an influent toluene concentration of 1000 ppm, oxygen concentration of 21%, a space velocity of 12000 hr-1, and relative humidity of 26%. The long-term test was proceeded for seven days at a constant influent toluene concentration of 1000 ppm, constant oxygen concentration of 21%, constant space velocity of 12000 hr-1 and constant relative humidity of 26%. The SEM results indicated the Cu/Mn catalyst was quite stable at 350¢J. ¡]3¡^RCO testing for a copper/manganese catalyst of gaseous toluene The Cu/Mn (20wt%) catalyst was selected as the best one, because it converted 95% of the toluene at 400¢J. The results also indicating that the Cu/Mn catalyst was quite stable at 400¢J. (4) RTO treatment of VOCs with SVE system The conversion for VOCs reached 80% at 900¢XC, an influent VOCs concentration of 450-2000 ppm and a gas flow rate of 0.5 m3/min.The Thermal Recovery Efficiency¡]TRE¡^was approximately 86-90% in a RTO operated at 800-900¢J. (5)RCO treatment of VOCs with SVE system¡]10 wt% Cu0.6Co0.4 gravel catalyst¡^ The 10 wt% Cu0.6Co0.4 gravel catalyst was the poverty active, because it converted 65% of the VOCs by SVE system operated at 650¢J. (6)RCO treatment of VOCs with SVE system¡]20% Cu/Mn aluminum oxide catalytst¡^ The 20% Cu/Mn aluminum oxide catalytic was the best choice, because it converted 95% of the VOCs at 650¢J, an influent VOCs concentration of 450-10000 ppm and a gas flow rate of 0.5-1.5 m3/min. The SEM results indicated that the conversion of VOCs decay did not clearly vary at 650¢J, also indicating that the Cu/Mn catalyst selected was quite stable. The TRE was approximately 90% in a RCO¡]20% Cu/Mn aluminum oxide catalytic¡^operated at 650¢J. (7)RCO treatment of VOCs with SVE system¡]20% Cu/Mn gravel catalytst¡^ The 20% Cu/Mn gravel catalytst was the best selection , because it converted 95% of the VOCs at 600¢J, an influent VOCs concentration of 450-10000 ppm and a gas flow rate of 0.5-1.5 m3/min. The SEM results indicated that the conversion of VOCs decay did not clearly vary at 600¢J, also indicating that the Cu/Mn catalyst selected was quite stable. The TRE was approximately 90% in a RCO¡]20% Cu/Mn gravel catalytic¡^operated at 600¢J.

Page generated in 0.0801 seconds