• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regionally distributed architecture for dynamic e-learning environment (RDADeLE)

AlZahrani, Saleh Saeed January 2010 (has links)
e-Learning is becoming an influential role as an economic method and a flexible mode of study in the institutions of higher education today which has a presence in an increasing number of college and university courses. e-Learning as system of systems is a dynamic and scalable environment. Within this environment, e-learning is still searching for a permanent, comfortable and serviceable position that is to be controlled, managed, flexible, accessible and continually up-to-date with the wider university structure. As most academic and business institutions and training centres around the world have adopted the e-learning concept and technology in order to create, deliver and manage their learning materials through the web, it has become the focus of investigation. However, management, monitoring and collaboration between these institutions and centres are limited. Existing technologies such as grid, web services and agents are promising better results. In this research a new architecture has been developed and adopted to make the e-learning environment more dynamic and scalable by dividing it into regional data grids which are managed and monitored by agents. Multi-agent technology has been applied to integrate each regional data grid with others in order to produce an architecture which is more scalable, reliable, and efficient. The result we refer to as Regionally Distributed Architecture for Dynamic e-Learning Environment (RDADeLE). Our RDADeLE architecture is an agent-based grid environment which is composed of components such as learners, staff, nodes, regional grids, grid services and Learning Objects (LOs). These components are built and organised as a multi-agent system (MAS) using the Java Agent Development (JADE) platform. The main role of the agents in our architecture is to control and monitor grid components in order to build an adaptable, extensible, and flexible grid-based e-learning system. Two techniques have been developed and adopted in the architecture to build LOs' information and grid services. The first technique is the XML-based Registries Technique (XRT). In this technique LOs' information is built using XML registries to be discovered by the learners. The registries are written in Dublin Core Metadata Initiative (DCMI) format. The second technique is the Registered-based Services Technique (RST). In this technique the services are grid services which are built using agents. The services are registered with the Directory Facilitator (DF) of a JADE platform in order to be discovered by all other components. All components of the RDADeLE system, including grid service, are built as a multi-agent system (MAS). Each regional grid in the first technique has only its own registry, whereas in the second technique the grid services of all regional grids have to be registered with the DF. We have evaluated the RDADeLE system guided by both techniques by building a simulation of the prototype. The prototype has a main interface which consists of the name of the system (RDADeLE) and a specification table which includes Number of Regional Grids, Number of Nodes, Maximum Number of Learners connected to each node, and Number of Grid Services to be filled by the administrator of the RDADeLE system in order to create the prototype. Using the RST technique shows that the RDADeLE system can be built with more regional grids with less memory consumption. Moreover, using the RST technique shows that more grid services can be registered in the RDADeLE system with a lower average search time and the search performance is increased compared with the XRT technique. Finally, using one or both techniques, the XRT or the RST, in the prototype does not affect the reliability of the RDADeLE system.
2

Dynamic line rating implementation as an approach to handle wind power integration : A feasibility analysis in a sub-transmission system owned by Fortum Distribution AB

Talpur, Saifal January 2013 (has links)
Based on conventional static line rating method, the actual current carrying capability of overheadconductors cannot be judged. Due to continuous increment in electricity demand and the difficultiesassociated with new line constructions, the overhead lines are therefore required to be rated based on amethod that should establish their real-time capability in terms of electricity transmission. The methodused to determine the real-time ampacity of overhead conductors not only can enhance their transmissioncapacity but can also help in allowing excessive renewable generation in the electricity network. In thisdiploma work, the issues related to analyzing an impact of wind power on periodical loading of overheadline as well as finding its static and dynamic ampacities with line current are investigated in detail.Initially, in this project, the investigation related to finding a suitable location for the construction of a 60MW wind farm is taken on board. Thereafter, the wind park is integrated with a regional grid, owned byFortum Distribution AB. In addition to that, the electricity generated from the wind park is also calculatedin this project. Later on, the work is devoted to finding the static and dynamic line ratings for‘VL3’overhead conductor by using IEEE-738-2006 standard.Furthermore, the project also deals with finding the line current and making its comparison withmaximum capacity of overhead conductor (VL3) for loading it in such a way that no any violation of safeground clearance requirements is observed at all. Besides, the line current, knowing the conductortemperature when it transmits the required electricity in the presence of wind power generation is also animportant factor to be taken into consideration. Therefore, based on real-time ambient conditions withactual line loading and with the help of IEEE-738-2006 standard, the conductor temperature is alsocalculated in this project.At the end, an economic analysis is performed to evaluate the financial advantages related to applying thedynamic line ratings approach in place of traditional static line ratings technique across an overheadconductor (VL3) and to know how much beneficial it is to temporarily postpone the rebuilding and/orconstruction of a new transmission line. Furthermore, an economic analysis related to wind power systemis taken into consideration as well to get familiar with the costs related to building and connecting a 60MW wind farm with the regional grid.

Page generated in 0.082 seconds