Spelling suggestions: "subject:"egions"" "subject:"1regions""
251 |
Populační perspektivy Kazachstánu do roku 2030 / Population perspects of Kazakhstan till 2030Tolesh, Fariza January 2013 (has links)
Population prospects of Kazakhstan till 2030 Abstract Population change affects national income, national expenditure, and the demand for services such as education, health and transport. Therefore, information about future population size and structure obtained with the help of population forecasts, which can be used for a wide range of decision-making purposes, is of paramount importance. The primary aim of this dissertation is to produce three different types of population forecasts for Kazakhstan till 2030 and by comparing and analysing the differences to find out the most important factors determining the population development process in the country. Kazakhstan is a country with significant size and regional diversity which makes it relevant to consider those dimensions in population forecasting. Most southern oblasts of the country have a young population structure meaning that much of future population growth, particularly of working age, will come from these regions. Also, native population tends to concentrate in rural areas, while industrialized cities are mostly populated by non-natives with considerably different nuptiality and fertility behaviour. Despite such regional and residential demographic differences, presently the country is experiencing an overall increase in birth rates. Many claims...
|
252 |
The effectiveness of the international environmental legal framework in protecting the Arctic environment in light of offshore oil and gas developmentShapovalova, Daria January 2017 (has links)
No description available.
|
253 |
Polymorphisms in gene promoters and their transactivation activities. / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
Briefly, some findings in my research are as follows: (1) The genetic variants of the CA repeats in IGF1 promoter 1 can affect the activity of promoter 1, and the CA repeat showed a suppressive effect on the activity of the promoter 1 of IGF1 gene. EMSA results have shown that the CA repeats could bind to certain nuclear protein. (2) The SNPs T/C (rs5742612) and T/A (rs2288377) can also affect the activity of the promoter 1 in IGF1 gene, and the activity of C-A haplotype is significantly higher than that of T-T haplotype. EMSA results have shown that the SNP T/A (rs2288377) could bind to certain nuclear protein. (3) I developed the new dual reporter assay method to investigate the transactivation interaction between the SNP T/G (rs2071430) and C/A (rs17000900) in the MxA promorer. This new method can not only improve the detection limit for small difference between haplotypes, but also calculate the model of transactivation effect between these two SNPs. The results were better than those of traditional method, and it gave a clear-cut demonstration of the effect of interaction between these two SNPs on the activity of MxA promoter. / In addition, in the IGF1 study, the core promoter region of promoter 2 was identified through 5' deletion mutagenesis methods. Moreover, a cell-type specific mechanism of bidirectional activation of promoter was found. / Recently, more and more studies focus on gene function with the completion of the Human Genome Project. It is well known that polymorphism of human genome sequence is a common phenomenon in the human population. Specially, a lot of genetic polymorphisms, including single nucleotide polymorphisms (SNPs) and microsatellites, have been reported in the regulatory region of many genes. However, the effects of most of these genetic polymorphisms on gene expression are still unknown. The polymorphisms in the promoter can play an important role in the gene regulation. For example, some SNPs located in the transcription factor binding site (TFBS) can affect gene transcription. So, it is very necessary to directly study the effect of genetic variants on promoter transactivation activities. In this study, we studied the effect of genetic polymorphisms on gene expression through reporter gene assay, electrophoretic mobility shift assay (EMSA), and so on. And the candidate genes include insulin-like growth factor 1 (IGF1) and myxovirus resistence 1 (MxA). Some SNPs and microsatellites have been reported in the promoters of these genes. In our previous researches, we focused on the study of the association between these polymorphisms and some diseases, and it was found that a few SNPs significantly associated with relevant diseases. Based on the previous results, in my project, I developed new functional assays and also improved existing methods to analyse the functional effect of these genetic variants of promoters on transactivation activities. / by Huang, Wei. / "March 2008." / Adviser: Nelson Leung Sang Tang. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1483. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (p. 139-145). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
254 |
Characterization of acetylcholinesterase and its promoter region in Tetraodon nigroviridis. / Characterization of acetylcholinesterase & its promoter region in Tetraodon nigroviridisJanuary 2006 (has links)
Lau Suk Kwan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 128-150). / Abstracts in English and Chinese. / Acknowledgment --- p.i / Table of content --- p.ii / List of Figures --- p.x / List of Tables --- p.xiv / Abbreviation --- p.xv / Abstract --- p.xviii / 論文摘要 --- p.xx / Chapter 1 --- Chapter 1 Introduction --- p.1 / Chapter 1.1 --- Tetraodon nigroviridis --- p.1 / Chapter 1.1.1 --- Background --- p.1 / Chapter 1.1.2 --- Genomic Sequencing Project --- p.3 / Chapter 1.1.3 --- Tetraodon nigroviridis as Study Model --- p.4 / Chapter 1.1.3.1 --- Genomic Comparison --- p.4 / Chapter 1.1.3.2 --- Gene Order and Structural Studies --- p.5 / Chapter 1.1.3.3 --- Genomic Evolution --- p.6 / Chapter 1.2 --- Transcriptional Regulation and Transcription Factors Binding Sites Prediction --- p.7 / Chapter 1.2.1 --- Transcriptional Regulation --- p.7 / Chapter 1.2.1.1 --- Chromatin Remodeling --- p.7 / Chapter 1.2.1.2 --- Locus Control Regions (LCR) and Boundary Elements --- p.8 / Chapter 1.2.1.3 --- Promoter Structure --- p.9 / Chapter 1.2.1.4 --- Transcriptional Machinery Assembly --- p.10 / Chapter 1.2.2 --- Transcription Factors and Their Binding Sites --- p.11 / Chapter 1.2.3 --- Transcription Factor Binding Site Prediction --- p.12 / Chapter 1.3 --- Acetylcholinesterase --- p.15 / Chapter 1.3.1 --- Background --- p.15 / Chapter 1.3.2 --- Regulation ofAChE --- p.17 / Chapter 1.3.2.1 --- Transcriptional Level --- p.17 / Chapter 1.3.2.2 --- Post-transcriptional Level --- p.19 / Chapter 1.3.2.3 --- Post-translational Level --- p.20 / Chapter 1.3.2.3.1 --- Oligomerization --- p.20 / Chapter 1.3.2.3.2 --- Glycosylation --- p.21 / Chapter 1.3.2.3.3 --- Phosphroylation --- p.22 / Chapter 1.3.3 --- Functions of AChE --- p.23 / Chapter 1.3.3.1 --- Hydrolysis Acetylcholine --- p.23 / Chapter 1.3.3.2 --- Embryonic Development --- p.23 / Chapter 1.3.3.3 --- Haemotopotesis and Thrombopsiesis --- p.24 / Chapter 1.3.3.4 --- Neuritogensis --- p.24 / Chapter 1.3.3.5 --- Amyloid Fibre Assembly --- p.24 / Chapter 1.3.3.6 --- Apoptosis --- p.25 / Chapter 1.3.4 --- AChE and Alzheimer's disease --- p.25 / Chapter 1.3.4.1 --- Treatment for AD Patients --- p.27 / Chapter 1.4 --- Inducible Cell Expression Systems --- p.28 / Chapter 1.5 --- Objectives --- p.32 / Chapter 2 --- Chapter 2 Materials and Methods --- p.33 / Chapter 2.1 --- Materials --- p.33 / Chapter 2.2 --- Methods --- p.34 / Chapter 2.2.1 --- Primer Design --- p.34 / Chapter 2.2.2 --- Cell Culture --- p.34 / Chapter 2.2.3 --- Transformation --- p.35 / Chapter 2.2.4 --- Plasmids Preparation --- p.35 / Chapter 2.2.5 --- Plasmids Screening --- p.36 / Chapter 2.2.6 --- RNA Extraction --- p.36 / Chapter 2.2.7 --- Reverse Transcriptase Polymerase Chain Reaction and Construction tnAChE/pCR4 vector --- p.37 / Chapter 2.2.8 --- Genomic Analysis --- p.37 / Chapter 2.2.9 --- Protein Sequence Analysis --- p.38 / Chapter 2.2.10 --- Genomic DNA Extraction --- p.39 / Chapter 2.2.11 --- Construction of Reporter Vectors ptnAChE_565/pGL3 and ptnAChK1143/pGL3 --- p.39 / Chapter 2.2.12 --- Luciferase Assay --- p.40 / Chapter 2.2.13 --- Transcription Factors and Promoter Prediction --- p.40 / Chapter 2.2.14 --- Protein Assay --- p.41 / Chapter 2.2.15 --- AChE Activity Determined by Ellman's Method --- p.41 / Chapter 2.2.16 --- Histochemistry --- p.42 / Chapter 2.2.17 --- Protein Extraction from Tissues --- p.42 / Chapter 2.2.18 --- Construction of Bacterial Expression Vector His-MBP-tnAChEAC/pHISMAL --- p.43 / Chapter 2.2.19 --- Protein Expression in Bacterial Expression System --- p.43 / Chapter 2.2.20 --- Purification and Thrombin Cleavage of His-MBP- tnAChEAC --- p.44 / Chapter 2.2.21 --- SDS Electrophoresis --- p.44 / Chapter 2.2.22 --- Western Blotting --- p.45 / Chapter 2.2.23 --- Construction of Tet-Off Expression Vector --- p.45 / Chapter 2.2.24 --- Transient Expression of tnAChEAC --- p.46 / Chapter 2.2.25 --- Establishment of Stable Tet-Off CHO Cell Lines Overexpressing tnAChEAC --- p.47 / Chapter 2.2.26 --- MTT Assay --- p.47 / Chapter 2.2.27 --- Partial Purification of tnAChEΔC --- p.48 / Chapter 3 --- Chapter 3 Sequence Analysis of AChE Gene of Tetraodon nigroviridis --- p.49 / Chapter 3.1 --- Results --- p.49 / Chapter 3.1.1 --- Cloning of tnAChE from Tetraodon nigroviridis Brain --- p.49 / Chapter 3.1.2 --- "Comparative genomic analysis of tnAChE with Human, Rat, Mouse, Takifugu rubripes, ZebrafishAChE" --- p.49 / Chapter 3.1.3 --- Primary Sequence Analysis --- p.52 / Chapter 3.1.4 --- Promoter and Transcriptional Factors Predictedin tnAChE Promoter Region --- p.60 / Chapter 3.1.4.1 --- Promoter Region Analysis In Silico --- p.60 / Chapter 3.1.4.2 --- Promoter Activity Analysis --- p.76 / Chapter 3.2 --- Discussion --- p.78 / Chapter 4 --- Characterization of tnAChE in Prokaryotic and Eukaryotic Tet-Off Inducible Expression System --- p.91 / Chapter 4.1 --- Results --- p.91 / Chapter 4.1.1 --- AChE Expresses in Tetraodon nigroviridis --- p.91 / Chapter 4.1.2 --- Expression of recombinant tnAChE in Bacterial Expression System --- p.94 / Chapter 4.1.2.1 --- Construction of His-MBP-tnAChEΔC/pHISMAL Construct --- p.94 / Chapter 4.1.2.2 --- His-MBP-tnAChEAC Expression in E. coli Strains BL21 (DE) and C41 --- p.94 / Chapter 4.1.3 --- Expression of tnAChEAC in Mammalian Expression System --- p.99 / Chapter 4.1.3.1 --- Construction of tnAChEAC/pTRE2hgyo Mammalian Expression Vector --- p.99 / Chapter 4.1.3.2 --- Transient Expression of tnAChEAC --- p.99 / Chapter 4.1.3.3 --- Establishment of Tet-Off CHO Cells Stably Expressing the Inducible tnAChEAC --- p.101 / Chapter 4.1.3.4 --- Characterization of Tet-Off tnAChEAC Stably Transfected Cell Clones --- p.103 / Chapter 4.1.3.5 --- Effect of Over Expressed tnAChEAC on cell viability --- p.103 / Chapter 4.1.3.6 --- Partial Purification of tnAChEAC from Stably Transfected Cells --- p.107 / Chapter 4.1.3.7 --- tnAChE and tnAChEAC in Different pH Values --- p.112 / Chapter 4.1.3.8 --- Kinetic Study of tnAChEAC --- p.112 / Chapter 4.1.3.9 --- Inhibition of AChE Activity of Partial Purified tnAChEAC by Huperzine --- p.112 / Chapter 4.2 --- Discussion --- p.116 / Chapter 4.2.1 --- Bacterial Expression System --- p.116 / Chapter 4.2.2 --- Expression of tnAChEΔC in Mammalian System --- p.119 / Chapter 5 --- General Discussion --- p.124 / Chapter 5.1 --- Summaries --- p.124 / Chapter 5.2 --- Further works --- p.126 / Chapter 6 --- References --- p.128 / Appendix 1 internet software and database used in this project --- p.151 / Appendix 2 tnAChE mRNA sequence --- p.152 / Appendix 3 ptnAChE-1143 sequence --- p.154 / Appendix 4 Six open reading frame translation of ptnAChE-1143 --- p.156
|
255 |
Study on the human coagulation factor IX promoter.January 1992 (has links)
Ho, Sui Fan Tong. / Thesis (M.Sc.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 68-71). / LIST OF TABLES / LIST OF FIGURES / ACKNOWLEDGEMENTS / ABSTRACT / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 2. --- OBJECTIVES --- p.12 / Chapter 3. --- MATERIALS AND METHODS --- p.13 / Chapter 3.1 --- Materials --- p.13 / Chapter 3.1.1 --- Enzymes --- p.13 / Chapter 3.1.2 --- DNA Markers --- p.13 / Chapter 3.1.3 --- General Reagents --- p.13 / Chapter 3.2 --- General Methods --- p.15 / Chapter 3.2.1 --- Phenol and Phenol/Chloroform (1:1) Preparation --- p.15 / Chapter 3.2.2 --- Buffer Preparation --- p.15 / Chapter 3.2.3 --- Agarose Gel Electrophoresis --- p.18 / Chapter 3.2.4 --- Polyacrylamide Gel Electrophoresis --- p.18 / Chapter 3.3 --- DNA Study --- p.19 / Chapter 3.3.1 --- Haemophilia B Patient --- p.19 / Chapter 3.3.2 --- Blood Collection --- p.20 / Chapter 3.3.3 --- DNA Extraction --- p.20 / Chapter 3.3.4 --- DNA Quantitation --- p.21 / Chapter 3.3.5 --- Polymerase Chain Reaction --- p.22 / Chapter 3.3.6 --- Purification of PCR Products --- p.28 / Chapter 3.3.7 --- Sequencing --- p.32 / Chapter 3.3.8 --- Cloning --- p.37 / Chapter 4. --- RESULTS --- p.40 / Chapter 4.1 --- DNA Extraction --- p.40 / Chapter 4.2 --- Calibration of the Coy TempCycler --- p.42 / Chapter 4.3 --- Optimization of PCR --- p.44 / Chapter 4.3.1 --- PCR-1 --- p.44 / Chapter 4.3.2 --- PCR-2 --- p.46 / Chapter 4.3.3 --- PCR-3 --- p.46 / Chapter 4.3.4 --- PCR-4 --- p.48 / Chapter 4.3.5 --- PCR-5 --- p.49 / Chapter 4.3.6 --- PCR-6 --- p.50 / Chapter 4.3.7 --- PCR-7 --- p.51 / Chapter 4.4 --- Purification of PCR Product --- p.52 / Chapter 4.4.1 --- GC-1 --- p.52 / Chapter 4.4.2 --- GC-2 --- p.52 / Chapter 4.4.3 --- GC-3 --- p.53 / Chapter 4.4.4 --- PAGE-1 --- p.54 / Chapter 4.4.5 --- PAGE-2 --- p.54 / Chapter 4.4.6 --- Agarose Gel Extraction with Glasswool Exclusion --- p.55 / Chapter 4.5 --- Direct Sequencing of PCR Products --- p.55 / Chapter 4.6 --- Cloning --- p.55 / Chapter 5. --- DISCUSSION --- p.57 / Chapter 5.1 --- DNA Extraction --- p.57 / Chapter 5.2 --- Polymerase Chain Reaction --- p.57 / Chapter 5.3 --- Purification of PCR Products --- p.58 / Chapter 5.4 --- Sequencing --- p.61 / Chapter 5.5 --- Cloning --- p.61 / Chapter 6. --- CONCLUSION --- p.67 / Chapter 7. --- PHOTOGRAPHS --- p.64 / Chapter 8. --- REFERENCES --- p.68
|
256 |
Regionalisation and the English regionsDeacon, Paul January 2008 (has links)
Since the 1990s, a regional tier of governance has emerged in England, in a country which historically has not been noted for its regional identities. The vying for European Union (EU) structural funds has been seen as a key factor in the mobilisation of regions across Europe. It is within the context of UK membership of the EU, and the effects of the Europeanisation processes, that some scholars have placed the appearance of English regions. Other scholars have sought to explain the growth of English regional governance principally in terms of a response to globalisation. New Regionalism offers an insight into the renewed interest in regions as the focus for economic governance in an increasingly globalised world. With its emphasis on clusters, skills and innovation as a way to promote a competitive advantage, links have been made with New Labour’s economic agenda. Economic rescaling, on the other hand, has been seen to offer a more nuanced understanding of the relationship between the state and the regions. On this view, the state is actively rescaling economic governance in response to the pressures of globalisation, but at the same time still retains its traditional authority. The emergence of governance more generally has also been cited as a factor in English regionalisation. The extent to which the state is being “hollowed out” is a feature of this debate. Again, links have been made specifically to New Labour’s agenda that included plans for devolution for Scotland and Wales and plans for elected regional assemblies in England. This thesis examines the East of England and the South West English regions within the context of these debates. The central argument is that regionalisation in England is a centrally orchestrated process by central government as the nature of governance, but not the state, changes.
|
257 |
EUV spectroscopy of solar active region jetsMulay, Sargam January 2018 (has links)
The million degree temperature of the solar corona has been a continuing puzzle to scientists. A detailed study of energetic events such as solar flares, coronal mass ejection and solar jets may provide important clues about how changes in the magnetic activity lead to explosive eruptions in the corona and contribute to coronal heating. In this thesis, the author has studied solar jets, ubiquitous energetic transients observed in the solar atmosphere. They have been observed to originate from the edge of active regions and show signatures in different layers of the solar atmosphere. A systematic investigation has been carried out by the author to understand the temperature structure of active region jets (AR jets) by combining imaging and spectroscopic observations using the differential emission measure (DEM) technique. The study gives a new perspective to our understanding of the dynamics involved in AR jets. Multiwavelength high-resolution imaging observations from space-based telescopes such as the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamic Observatory (SDO), the X-ray Telescope (XRT) on board the Hinode satellite, and spectroscopic observations from the Extreme UV Imaging Spectrometer (EIS) on board the Hinode and the Interface Region Imaging Spectrometer (IRIS) were used to study the physical parameters of jets such as plasma flows, electron number densities, emission measure, peak temperature, velocities (plane-of-sky, Doppler, nonthermal) and filling factors. In addition, the relationship between AR jets and other phenomena such as photospheric magnetic activity, nonthermal type-III radio bursts and soft/hard X-ray emission has been studied using the Helioseismic and Magnetic Imager (HMI) on board SDO, the WAVES instrument on board the Wind satellite and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) respectively. The observations and results obtained in this study compare well with numerical simulations and theoretical models available in the literature.
|
258 |
Arctic Ocean ambient noise.Shepard, George Woods January 1979 (has links)
Thesis (Ocean E)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 178-180. / Ocean E
|
259 |
A comparison of normal theory and bootstrap confidence intervals on the parameters of nonlinear modelsElling, Mary Margaret January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
260 |
Brownian Motion and Planar Regions: Constructing Boundaries from h-FunctionsCortez, Otto 01 January 2000 (has links)
In this thesis, we study the relationship between the geometric shape of a region in the plane, and certain probabilistic information about the behavior of Brownian particles inside the region. The probabilistic information is contained in the function h(r), called the harmonic measure distribution function. Consider a domain Ω in the plane, and fix a basepoint z0. Imagine lining the boundary of this domain with fly paper and releasing a million fireflies at the basepoint z0. The fireflies wander around inside this domain randomly until they hit a wall and get stuck in the fly paper. What fraction of these fireflies are stuck within a distance r of their starting point z0? The answer is given by evaluating our h-function at this distance; that is, it is given by h(r). In more technical terms, the h-function gives the probability of a Brownian first particle hitting the boundary of the domain Ω within a radius r of the basepoint z0. This function is dependent on the shape of the domain Ω, the location of the basepoint z0, and the radius r. The big question to consider is: How much information does the h-function contain about the shape of the domain’s boundary? It is known that an h-function cannot uniquely determine a domain, but is it possible to construct a domain that generates a given hfunction? This is the question we try to answer. We begin by giving some examples of domains with their h-functions, and then some examples of sequences of converging domains whose corresponding h-functions also converge to the h-function. In a specific case, we prove that artichoke domains converge to the wedge domain, and their h-functions also converge. Using another class of approximating domains, circle domains, we outline a method for constructing bounded domains from possible hfunctions f(r). We prove some results about these domains, and we finish with a possible for a proof of the convergence of the sequence of domains constructed.
|
Page generated in 0.0813 seconds