• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preliminary investigation into estimating eye disease incidence rate from age specific prevalence data

Majeke, Lunga January 2011 (has links)
This study presents the methodology for estimating the incidence rate from the age specific prevalence data of three different eye diseases. We consider both situations where the mortality may differ from one person to another, with and without the disease. The method used was developed by Marvin J. Podgor for estimating incidence rate from prevalence data. It delves into the application of logistic regression to obtain the smoothed prevalence rates that helps in obtaining incidence rate. The study concluded that the use of logistic regression can produce a meaningful model, and the incidence rates of these diseases were not affected by the assumption of differential mortality.
2

Variable selection and structural discovery in joint models of longitudinal and survival data

He, Zangdong January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Joint models of longitudinal and survival outcomes have been used with increasing frequency in clinical investigations. Correct specification of fixed and random effects, as well as their functional forms is essential for practical data analysis. However, no existing methods have been developed to meet this need in a joint model setting. In this dissertation, I describe a penalized likelihood-based method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions for model selection. By reparameterizing variance components through a Cholesky decomposition, I introduce a penalty function of group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and optimized by an EM algorithm. The functional forms of the independent effects are determined through a procedure for structural discovery. Specifically, I first construct the model by penalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by spectral decomposition. The decomposition represents the model in a mixed-effects model format, and I then use the mixed-effects variable selection method to perform structural discovery. Simulation studies show excellent performance. A clinical application is described to illustrate the use of the proposed methods, and the analytical results demonstrate the usefulness of the methods.
3

Multivariate semiparametric regression models for longitudinal data

Li, Zhuokai January 2014 (has links)
Multiple-outcome longitudinal data are abundant in clinical investigations. For example, infections with different pathogenic organisms are often tested concurrently, and assessments are usually taken repeatedly over time. It is therefore natural to consider a multivariate modeling approach to accommodate the underlying interrelationship among the multiple longitudinally measured outcomes. This dissertation proposes a multivariate semiparametric modeling framework for such data. Relevant estimation and inference procedures as well as model selection tools are discussed within this modeling framework. The first part of this research focuses on the analytical issues concerning binary data. The second part extends the binary model to a more general situation for data from the exponential family of distributions. The proposed model accounts for the correlations across the outcomes as well as the temporal dependency among the repeated measures of each outcome within an individual. An important feature of the proposed model is the addition of a bivariate smooth function for the depiction of concurrent nonlinear and possibly interacting influences of two independent variables on each outcome. For model implementation, a general approach for parameter estimation is developed by using the maximum penalized likelihood method. For statistical inference, a likelihood-based resampling procedure is proposed to compare the bivariate nonlinear effect surfaces across the outcomes. The final part of the dissertation presents a variable selection tool to facilitate model development in practical data analysis. Using the adaptive least absolute shrinkage and selection operator (LASSO) penalty, the variable selection tool simultaneously identifies important fixed effects and random effects, determines the correlation structure of the outcomes, and selects the interaction effects in the bivariate smooth functions. Model selection and estimation are performed through a two-stage procedure based on an expectation-maximization (EM) algorithm. Simulation studies are conducted to evaluate the performance of the proposed methods. The utility of the methods is demonstrated through several clinical applications.

Page generated in 0.1406 seconds