Spelling suggestions: "subject:"regularity"" "subject:"dregularity""
51 |
Asymptotic Regularity Estimates for Diffusion ProcessesHernandez, David 01 January 2023 (has links) (PDF)
A fundamental result in the theory of elliptic PDEs shows that the hessian of solutions of uniformly elliptic PDEs belong to the Sobolev space ��^2,ε. New results show that for the right choice of c, the optimal hessain integrability exponent ε* is given by
ε* = ������ ����(1−������) / ����(1−��), �� ∈ (0,1)
Through the techniques of asymptotic analysis, the behavior and properties of this function are better understood to establish improved quantitative estimates for the optimal integrability exponent in the ��^2,ε-regularity theory.
|
52 |
Generic Distractions and Strata of Hilbert Schemes Defined by the Castelnuovo-Mumford RegularityAnna-Rose G Wolff (13166886) 28 July 2022 (has links)
<p>Consider the standard graded polynomial ring in $n$ variables over a field $k$ and fix the Hilbert function of a homogeneous ideal. In the nineties Bigatti, Hulett, and Pardue showed that the Hilbert scheme consisting of all the homogeneous ideals with such a Hilbert function contains an extremal point which simultaneously maximizes all the graded Betti numbers. Such a point is the unique lexsegment ideal associated to the fixed Hilbert function.</p>
<p> For such a scheme, we consider the individual strata defined by all ideals with Castelnuovo-Mumford regularity bounded above by <em>m</em>. In 1997 Mall showed that when <em>k </em>is of characteristic 0 there exists an ideal in each nonempty strata with maximal possible Betti numbers among the ideals of the strata. In chapter 4 of this thesis we provide a new construction of Mall's ideal, extend the result to fields of any characteristic, and show that these ideals have other extremal properties. For example, Mall's ideals satisfy an equation similar to Green's hyperplane section theorem.</p>
<p> The key technical component needed to extend the results of Mall is discussed in Chapter 3. This component is the construction of a new invariant called the distraction-generic initial ideal. Given a homogeneous ideal <em>I C S</em> we construct the associated distraction-generic initial ideal, D-gin<sub><</sub> (<em>I</em>), by iteratively computing initial ideals and general distractions. The result is a monomial ideal that is strongly stable in any characteristic and which has many properties analogous to the generic initial ideal of <em>I</em>.</p>
|
53 |
[en] REGULARITY TRANSMISSION BY APPROXIMATION METHODS: THE ISAACS EQUATION / [pt] TEORIA DE REGULARIDADE POR MÉTODOS DE APROXIMAÇÃO: A EQUAÇÃO DE ISAACSMIGUEL BELTRAN WALKER URENA 30 April 2020 (has links)
[pt] A equação de Isaacs é um exemplo importante de equação elíptica totalmente não-linear, aparecendo em uma grande variedade de disciplinas. Um fato de interesse particular é que tais equações são dirigidas por operadores não convexos. Portanto, são compatíveis com a teoria de EvansKrylov e apresentam delicados desafios quando se trata de sua teoria da regularidade. Descrevemos uma série de resultados recentes sobre a teoria da regularidade da Equação de Isaacs. Estas cobrem estimativas nos espaços
Hölder e Sobolev. Argumentamos através de um método genuinamente geométrico, importando informações de uma equação de Bellman relacionada. / [en] Isaacs equation is an important example of fully nonlinear elliptic
equation, appearing in a wide of disciplines. Of particular interest is the
fact that such equations are driven by nonconvex operators. Therefore,
it falls off the scope of the Evans-Krylov theory and poses additional,
delicate, challenges when it comes to its regularity theory. We describe
a series of recent results on the regularity theory of the Isaacs equation.
These cover estimates in Holder and Sobolev spaces. We argue through
a genuinely geometrical method, by importing information from a related
Bellman equation.
|
54 |
Fonctions nonconvexes inférieurement s-régulières / Nonconvex s-lower regular functionsKecis, Ilyas 17 June 2014 (has links)
La thèse est constituée de cinq chapitres. Le premier chapitre est consacré à étudier le sous-différentiel de Hölder ainsi que le cône normal de Hölder. Nous établissons différentes règles de calcul pour ce type de sous-différentiel. La relation entre le sous-différentiel de Hölder de la fonction distance et le cône normal de Hölder d'un ensemble S en un point x est également traitée dans le cas où x est dans S ou en dehors de S. Le deuxième chapitre étudie les fonctions inférieurement $s$-régulières dans un espace de Banach. Cette classe de fonctions est une extension de celle dite "Primal lower nice functions" (pln en abrégé), introduite par R.A. Poliquin dans les espaces de dimension finie. Le but de cette partie est de donner dans le contexte d'espaces Banachiques plus généraux, une caractérisation sous-différentielle de ces fonctions ainsi que l'égalité avec d'autres sous-différentiels connus. Nous nous intéressons dans le troisième chapitre à l'étude des propriétés de différentiabilité de l'enveloppe de Moreau d'une fonction inférieurement $s$-régulière. Nous établissons entre autres, sous des conditions assez générales, que l'enveloppe de Moreau d'une telle fonction est de classe C^{1,alpha} et que l'application proximale associée est Höldérienne.Dans les chapitres 4 et 5, nous obtenons des résultats d'existence de solutions d'inégalités variationnelles. Nous considérons le cas d'inclusion différentielle associée au sous-différentiel d'une fonction plr avec une perturbation. Le cas d'inclusion différentielle gouvernée par le cône normal d'un ensemble prox-régulier est aussi étudié. / The thesis contains five chapters. The first chapter is devoted to study the Hölder subdifferential and the Hölder normal cone. We establish different calculus rules for this type of subdifferential. The relationship between the Hölder subdifferential of the distance function and the Hölder normal cone of a set S at a point x is also studied in the case where either x is in S or outside of S. The second chapter studies the s-lower regular functions in a Banach space. This class of functions is an extension of the Primal lower nice functions ( pln for short) introduced by R.A. Poliquin in finite dimensional spaces. The purpose of this section is to establish in the context of general Banach spaces, a subdifferential characterization of these functions as well as the equality with other known subdifferentials. We are interested in the third chapter in the study of differentiability properties of the Moreau envelope associated to an s-lower regular function. We show, under enough general conditions that, the Moreau envelope of such functions is of class C^{1,alpha} and the associated proximal mapping is Hölderian. In chapters 4 and 5, we obtain existence results of solution of variational inequalities. We consider the case of differential inclusion associated to plr functions with single-valued perturbation. The case of differential inclusion governed by the normal cone of prox-regular sets is also studied.
|
55 |
Algorithms for structured nonconvex optimization: theory and practiceNguyen, Hieu Thao 17 October 2017 (has links)
No description available.
|
56 |
A qualitative research of motivation factors of Russian Christian men for regular voluntary church ministryLibuda, Klaus 11 1900 (has links)
The religious freedom introduced to Russia in 1989, due to perestroika, gave new
opportunities for Christianity to expand. People accepted Christ and new churches were
founded. Nevertheless after 16 years of transformation the evangelical churches in Russia are
diminishing in growth. There are probably several reasons for this. One major reason which is
suggested here, is that only a minority of Russian Christian men are willing to take up regular
voluntary church ministry: like being a home group leader, taking care of the church building,
having a part in Sunday school teaching, helping with the youth group or any other kind of
service. As a result, not only are pastors often overloaded with administration work and can
not find time for people but also ministry opportunities are not started, developed or
expanded. Therefore this research aims to find out which factors are important to Russian
Christian men in order for them to engage a regular voluntary church ministry. / Christian Spirituality, Church History and Missiology / M. Th. (Missiology)
|
57 |
On the analysis of refinable functions with respect to mask factorisation, regularity and corresponding subdivision convergenceDe Wet, Wouter de Vos 12 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / We study refinable functions where the dilation factor is not always assumed to be 2. In
our investigation, the role of convolutions and refinable step functions is emphasized as a
framework for understanding various previously published results. Of particular importance
is a class of polynomial factors, which was first introduced for dilation factor 2 by
Berg and Plonka and which we generalise to general integer dilation factors.
We obtain results on the existence of refinable functions corresponding to certain reduced
masks which generalise similar results for dilation factor 2, where our proofs do not
rely on Fourier methods as those in the existing literature do.
We also consider subdivision for general integer dilation factors. In this regard, we extend
previous results of De Villiers on refinable function existence and subdivision convergence
in the case of positive masks from dilation factor 2 to general integer dilation factors.
We also obtain results on the preservation of subdivision convergence, as well as on the
convergence rate of the subdivision algorithm, when generalised Berg-Plonka polynomial
factors are added to the mask symbol.
We obtain sufficient conditions for the occurrence of polynomial sections in refinable
functions and construct families of related refinable functions.
We also obtain results on the regularity of a refinable function in terms of the mask
symbol factorisation. In this regard, we obtain much more general sufficient conditions
than those previously published, while for dilation factor 2, we obtain a characterisation of
refinable functions with a given number of continuous derivatives.
We also study the phenomenon of subsequence convergence in subdivision, which explains
some of the behaviour that we observed in non-convergent subdivision processes
during numerical experimentation. Here we are able to establish different sets of sufficient
conditions for this to occur, with some results similar to standard subdivision convergence,
e.g. that the limit function is refinable. These results provide generalisations of the corresponding
results for subdivision, since subsequence convergence is a generalisation of
subdivision convergence. The nature of this phenomenon is such that the standard subdivision
algorithm can be extended in a trivial manner to allow it to work in instances where
it previously failed.
Lastly, we show how, for masks of length 3, explicit formulas for refinable functions can
be used to calculate the exact values of the refinable function at rational points.
Various examples with accompanying figures are given throughout the text to illustrate
our results.
|
58 |
REGULARITY AND UNIQUENESS OF SOME GEOMETRIC HEAT FLOWS AND IT'S APPLICATIONSHuang, Tao 01 January 2013 (has links)
This manuscript demonstrates the regularity and uniqueness of some geometric heat flows with critical nonlinearity.
First, under the assumption of smallness of renormalized energy, several issues of the regularity and uniqueness of heat flow of harmonic maps into a unit sphere or a compact Riemannian homogeneous manifold without boundary are established.
For a class of heat flow of harmonic maps to any compact Riemannian manifold without boundary, satisfying the Serrin's condition,
the regularity and uniqueness is also established.
As an application, the hydrodynamic flow of nematic liquid crystals in Serrin's class is proved to be regular and unique.
The natural extension of all the results to the heat flow of biharmonic maps is also presented in this manuscript.
|
59 |
Trees and graphs : congestion, polynomials and reconstructionLaw, Hiu-Fai January 2011 (has links)
Spanning tree congestion was defined by Ostrovskii (2004) as a measure of how well a network can perform if only minimal connection can be maintained. We compute the parameter for several families of graphs. In particular, by partitioning a hypercube into pieces with almost optimal edge-boundaries, we give tight estimates of the parameter thereby disproving a conjecture of Hruska (2008). For a typical random graph, the parameter exhibits a zigzag behaviour reflecting the feature that it is not monotone in the number of edges. This motivates the study of the most congested graphs where we show that any graph is close to a graph with small congestion. Next, we enumerate independent sets. Using the independent set polynomial, we compute the extrema of averages in trees and graphs. Furthermore, we consider inverse problems among trees and resolve a conjecture of Wagner (2009). A result in a more general setting is also proved which answers a question of Alon, Haber and Krivelevich (2011). After briefly considering polynomial invariants of general graphs, we specialize into trees. Three levels of tree distinguishing power are exhibited. We show that polynomials which do not distinguish rooted trees define typically exponentially large equivalence classes. On the other hand, we prove that the rooted Ising polynomial distinguishes rooted trees and that the Negami polynomial determines the subtree polynomial, strengthening results of Bollobás and Riordan (2000) and Martin, Morin and Wagner (2008). The top level consists of the chromatic symmetric function and it is proved to be a complete invariant for caterpillars.
|
60 |
On the regularity of holonomically constrained minimisers in the calculus of variationsHopper, Christopher Peter January 2014 (has links)
This thesis concerns the regularity of holonomic minimisers of variational integrals in the context of direct methods in the calculus of variations. Specifically, we consider Sobolev mappings from a bounded domain into a connected compact Riemannian manifold without boundary, to which such mappings are said to be holonomically constrained. For a general class of strictly quasiconvex integral functionals, we give a direct proof of local C<sup>1,α</sup>-Hölder continuity, for some 0 < α < 1, of holonomic minimisers off a relatively closed 'singular set' of Lebesgue measure zero. Crucially, the proof constructs comparison maps using the universal covering of the target manifold, the lifting of Sobolev mappings to the covering space and the connectedness of the covering space. A certain tangential A-harmonic approximation lemma obtained directly using a Lipschitz approximation argument is also given. In the context of holonomic minimisers of regular variational integrals, we also provide bounds on the Hausdorff dimension of the singular set by generalising a variational difference quotient method to the holonomically constrained case with critical growth. The results are analogous to energy-minimising harmonic maps into compact manifolds, however in this case the proof does not use a monotonicity formula. We discuss several applications to variational problems in condensed matter physics, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals. In these problems, the class of mappings are constrained to an orbit of 'broken symmetries' or 'manifold of internal states', which correspond to a sub-group of residual symmetries.
|
Page generated in 0.0566 seconds