• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des facteurs de transcription PHOX2B, GATA3 et HAND2 dans l’identité et l’oncogenèse du neuroblastome / Role of the PHOX2B/GATA3/HAND2 Transcription Factors in Neuroblastoma Identity and Oncogenesis

Peltier, Agathe 02 December 2019 (has links)
Le neuroblastome est cancer du jeune enfant se développant au sein du système nerveux périphérique sympathique. Cette tumeur est caractérisée par sa grande hétérogénéité clinique : allant de formes régressant spontanément aux tumeurs de haut-risque, réfractaires aux traitements les plus agressifs. La survie à long terme des patients présentant un neuroblastome de haut-risque reste par ailleurs inférieure à 50%, ce qui souligne la nécessité de trouver de nouveaux traitements afin d’améliorer leur prise en charge thérapeutique.Récemment, en définissant le paysage épigénétique des cellules de neuroblastome, nous avons observé la présence de super-enhancers (SE). La caractérisation du paysage des SE dans les lignées de neuroblastome nous a permis de révéler l’hétérogénéité cellulaire du neuroblastome, composée de deux identités distinctes : noradrénergique et mésenchymateuse. Chacune des identités cellulaires est caractérisée par un circuit de régulation transcriptionnelle (CRC) : les facteurs PHOX2B, HAND2 et GATA3 définissent l’identité noradrénergique alors que les facteurs de la famille AP-1 gouvernent l’identité mésenchymateuse. Nous avons par ailleurs montré la différence de sensibilité aux chimiothérapies classiquement utilisées en clinique entre ces deux types cellulaires, avec une résistance accrue des cellules mésenchymateuses.Mon travail de thèse porte sur la caractérisation du rôle des facteurs de transcription PHOX2B et GATA3 dans l’établissement et le maintien de l’identité noradrénergique des cellules de neuroblastome. J’ai réalisé leur knock-out par CRISPR-Cas9 dans la lignée noradrénergique SH-SY5Y. L’inactivation de PHOX2B ne modifie ni le programme transcriptionnel ni le phénotype des cellules, arborant une identité noradrénergique. En revanche, les cellules inactivées pour GATA3 possèdent un phénotype cellulaire mésenchymateux ainsi que des capacités de migration, d’invasion et de résistance aux chimiothérapies. Le knock-out de PHOX2B et GATA3 entraine une diminution de la prolifération cellulaire, traduisant le phénomène d’addiction transcriptionnelle des cellules cancéreuses. La caractérisation du paysage épigénétique des cellules inactivées pour GATA3 démontre leur reprogrammation de l’identité noradrénergique vers l’identité mésenchymateuse avec l’effondrement des SE noradrénergiques ainsi que l’acquisition de SE mésenchymateux. GATA3 est donc indispensable pour le maintien de l’identité noradrénergique in vitro.Les résultats générés lors de ma thèse montrent que les facteurs de transcription impliqués dans un même CRC possèdent des rôles distincts dans l’identité cellulaire. La caractérisation de la dynamique de reprogrammation ainsi que des facteurs impliqués dans ce processus nous permettrons de mieux comprendre les phénomènes de plasticité cellulaire à l’origine de la progression tumorale et de la rechute thérapeutique des patients. / Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system characterized by its diversity of clinical presentations from spontaneous regression to highly aggressive tumors. Currently, the overall survival of high-risk neuroblastoma patients remains under 50% which highlight the need to find new therapeutic approaches to improve patient outcome.Recently, we defined the epigenetic landscape of neuroblastoma cell lines and observed the presence of super-enhancers (SE). The characterization of the SE landscape let us to define the heterogeneity of neuroblastoma cell identity with the presence of noradrenergic and mesenchymal cells. Both cell identities are governed by a core regulatory circuitry (CRC), composed by PHOX2B-HAND2-GATA3 in the noradrenergic cells and by AP-1 transcription factors in the mesenchymal cells. We also demonstrate the different behaviors of the cells regarding chemotherapy treatments with a higher resistance of the mesenchymal cells.My thesis aimed at deciphering the role of PHOX2B and GATA3 transcription factors in the establishment and the maintenance of the noradrenergic identity of neuroblastoma cells. To do this, PHOX2B and GATA3 were knock-out by CRISPR-Cas9 in the noradrenergic SH-SY5Y cell line. PHOX2B knock-out has no major impact neither on the transcriptomic profile nor the phenotype of the cells. PHOX2B knock-out cells still maintain their noradrenergic identity. In contrast, GATA3 knock-out cells harbor a mesenchymal phenotype showing higher ability to migrate, invade and being pore resistant to chemotherapy than control SH-SY5Y cells. Both PHOX2B and GATA3 knock-out decrease the SH-SY5Y cell proliferation in vitro and in vivo, which highlight the transcriptional dependency of the noradrenergic cells for their identity-related transcription factors. The characterization of the epigenetic landscape of GATA3 knock-out cells revealed their reprograming from the noradrenergic to the mesenchymal identity with the loss of noradrenergic SE and the acquisition of mesenchymal SE. These results demonstrate that GATA3 is essential for the maintenance of the noradrenergic identity in vitro.Altogether, these results show that transcription factors involved in a CRC can have distinct role in the cell identity. The characterization of the reprogramming dynamics as well as the factors involved in this process will allow us to better understand the cellular plasticity involved in the tumor progression and patient relapse.

Page generated in 0.0623 seconds