• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL INVESTIGATION OF COMBUSTION AND OXIDATION IN A STEEL REHEAT FURNACE

Bethany M Worl (8108528) 12 December 2019 (has links)
<div>The objective of this research was to develop an efficient simulation of an industrial reheating furnace with a flexible scale formation model and to apply the models to study various conditions within an industrial reheating furnace. This work focused on developing a model capable of considering many different key variables that influence scale formation. The scale formation model was incorporated into the computational fluid dynamics (CFD) software ANSYS Fluent © to solve a coupled steady-state and transient simulation. It was also generalized for a low-carbon steel product, so it may not be adequate to cover the effects of alloying metals on the oxidation process. In order to verify the accuracy of these models, baseline cases were simulated and validated against both industrial data and findings from experiments in published literature.</div><div><br></div><div>A parametric study with two levels of oxygen enrichment implementation in only the preheat zone was undertaken to study the effects on the heat transfer, scale formation, and fluid flow within the reheat furnace. A medium oxygen enrichment case of 46 vol% oxygen and an oxy-fuel case were used for study. Both oxygen enrichment cases showed largely increased heat transfer to the slab in the preheat zone and increased scale formation. Based on these results, 46 vol% oxygen enrichment is recommended for use in a typical industrial reheat furnace with additional firing rate drawback to reduce scaling and to reduce the chance of overheating the steel slab product.</div>
2

Implementation of an Organic Rankine cycle on a Stepping furnace

Pižorn, Žiga January 2014 (has links)
In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed. The study is a case study at the company Štore&amp;STEEL d.o.o. with intentions of realization. In a steel mill a stepping furnace is used to preheat the steel billets for later forging. The stepping furnace is gas fired and already has recuperation of the inlet air implemented. Still there is high temperature of the stack after recuperation, which makes application of an ORC worth of researching and modeling.First the flue gas over one year of furnace operation is analyzed in terms of temperature and volumetric flow. Mass flow and heat capacity are calculated. A layout of an ORC is proposed and modeled in IPSEpro for different temperatures of the flue gas resulting in different output powers and efficiencies. For each temperature an economic viability calculation with the method of reference cost of electric energy is done.The results are presented and the best design and conditions are proposed. The results of the thesis proved that further detailed measurements and calculation are worthwhile , as the flue gas from the stepping furnace has satisfactory conditions to make an application of an Organic Rankine cycle viable. Also the least ammount of state support to fulfill the companies conditions on return of investment is calculated and presented. Finally there are additional measurements and calculations suggested.

Page generated in 0.0636 seconds