• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Centrifuge modelling of soil nailed walls

Gammage, Paul J. January 1997 (has links)
No description available.
2

Srovnávací analýza modelování pohledového čela vyztuženého násypu / Comparative Analysis of Modelling of Reinforced Embankment Face

Fryš, František January 2013 (has links)
The thesis deals with numerical modeling of reinforced earth wall. The first part of the thesis characterizes and describes these constructions in general and also describes variations of their faces. In the next part the modeling of basic reinforced earth wall construction elements in Plaxis 2D is described. Subsequently the real reinforced earth wall is modeled and some variations of face-modeling are compared.
3

A Field Study of Construction Deformations in a Mechanically Stabilized Earth Wall

Abele, Nathan Daniel January 2006 (has links)
No description available.
4

Effet de la corrosion des armatures sur le comportement des murs en remblai renforcé par des éléments métalliques / Effect of corrosion on the behavior of earth walls reinforced by steel elements

Chau, Truong-Linh 27 September 2010 (has links)
Ce mémoire étudie, par la voie de la modélisation numérique, le comportement des murs en terre armée sous l'effet de la corrosion des armatures. L'analyse de données recueillies sur des ouvrages réels, âgés de plusieurs dizaines d'années, a montré la différence de comportement selon les types d'armatures, mais aussi la forte dispersion de l'ensemble des données. Elle a permis de proposer des relations entre la perte de masse et la diminution de la résistance et de l'allongement à la rupture des armatures.La présence des armatures très minces par rapport aux dimensions de l'ouvrage rend intéressante l'utilisation de méthodes d'homogénéisation. On a retenu une modélisation multiphasique, qui permet une modélisation satisfaisante de la traction dans les armatures.Quatre scénarios de corrosion ont été étudiés pour prendre en compte diverses situations susceptibles de conduire à des taux de corrosion élevés. La répartition spatiale de la corrosion peut avoir une influence importante sur le comportement du mur, sur le mécanisme de ruine et provoquer des phénomènes complexes de report des effort d'une armature sur une autre.Nous avons réalisé une étude paramétrique de l'effet de surcharges appliquées à l'ouvrage, et de certains détails de modélisation comme la jonction entre écailles, et la jonction entre armatures et écailles. Les résultats obtenus sont comparés à des mesures sur des ouvrages réels ou des modèles réduits, et à d'autres résultats de calcul.Les résultats conduisent à formuler des propositions concernant le suivi des déformations des ouvrages (nature et précision des mesures à effectuer, intervalles de temps entre inspections successives) / This thesis presents numerical simulations of the behavior of reinforced earth walls induced by the corrosion of the reinforcement strips. The preliminary analysis of a database, gathering results of laboratory tests, performed on soil and steel samples extracted from wall built several decades ago, has shown the difference in behavior between different types of reinforcement strips, and the large scattering of data. It served as a basis to derive relationships between weight loss, ultimate strength and ultimate strain of reinforcement strips.The presence of very thin strips compared to the size of the reinforced earth wall makes it interesting to use homogenization methods. We adopted a multiphase model, that makes it possible to get a satisfactory modeling of the tensile forces in reinforcement strips.We studied four corrosion scenarios to take into account various situations in which corrosion rates can become significant. The spatial distribution of corrosion can have a clear influence on the behavior of the wall, the failure mechanism, and create complex redistributions of tensile forces between adjacent strips. Parametric studies were carried out to investigate the effects of surcharges, and of some details of modeling, such as the junction between panels, or the junction between the reinforcement strips and the facing panels. Results have been compared with measures obtained on full scale reinforced earth walls or on physical models, and with results of other numerical simulations. Results provide elements for the definition of a strategy for the monitoring and the surveillance of reinforced earth walls
5

Modélisation du comportement d'un remblai en sol renforcé sous chargement ferroviaire de type TGV / Numerical model of a mechanically stabilized earth wall under high speed train loading

Payeur, Jean-Baptiste 16 October 2015 (has links)
Cette thèse étudie le comportement de remblais en sol renforcé lors du passage de trains par simulation numérique. Il s'agit de déterminer si les trains à grande vitesse ont un impact particulier sur ce type d'ouvrage. Après un état de l'art des remblais en sol renforcé et de la modélisation numérique de problèmes ferroviaires, les résultats du chargement harmonique d'un remblai expérimental en Terre Armée sont analysés. Ils montrent que les valeurs des tractions dans les armatures, des contraintes et déplacements dans le massif dépendent de la fréquence de la sollicitation, c'est-à-dire de la vitesse de passage du train. On construit un modèle 3D aux éléments finis pour reproduire cette expérience. Il permet de retrouver les valeurs expérimentales avec une bonne précision, en mettant en avant l'importance du choix des lois de comportement du sol, du parement et des armatures. Ce modèle avec ses paramètres est alors utilisé pour discuter du comportement local de l'interface armature/remblai au cours d'un chargement harmonique en régime établi. Le confinement varie beaucoup le long des armatures supérieures au cours du chargement dynamique, tandis que les tractions sont peu affectées par le chargement dynamique. Cependant, malgré ces variations au cours du temps, la stabilité de l'interface reste peu affectée par rapport au cas d'un chargement statique. Un second modèle a été développé pour représenter un remblai de taille plus importante, en utilisant la modélisation multiphasique et en utilisant un repère mobile pour prendre en compte le déplacement du train. Les aspects théoriques et l'implémentation de ce modèle dans le code CESAR-LCPC sont détaillés. On l'utilise pour effectuer une étude tri-dimensionnelle d'un remblai renforcé. Elle met en évidence la faible influence de la vitesse de la charge sur la réponse de l'ouvrage, dans le cas d'un remblai rigide ayant des caractéristiques tirées du remblai expérimental. Dans le cas d'un remblai moins rigide, la vitesse d'un TGV peut s'approcher de la vitesse des ondes de cisaillement dans le massif avec des conséquences significatives au sein de la structure. Finalement, les valeurs expérimentales et les deux modèles numériques développés présentent les mêmes tendances : l'effet dynamique du passage du train a pour conséquence une augmentation des déplacements et une variation du confinement des armatures, tandis que les niveaux de traction sont peu affectés par la charge, ce qui nous incite à conclure que la vitesse du train n'est pas significativement pénalisante sur la stabilité des remblais pour les paramètres issus de l'analyse du remblai expérimental. Toutefois, ces résultats dépendent fortement de la géométrie de la structure, de la façon de modéliser le train, des lois de comportement et des valeurs des paramètres retenus pour le sol, le parement et l'interface sol/armature / This study focuses on the numerical modeling of the Mechanically Stabilized Earth (MSE) walls behavior under High Speed Train (HST) loading. First, the state of the art in reinforced earth as well as in railway dynamics modeling is analyzed. Then we present results coming from the testing of a one-scale reinforced embankment submitted to harmonic loading. They indicate that tensile forces in reinforcements, stresses and displacements depend on loading frequency which is related to train speed. One proposes a 3D Finite Element Model (FEM) in order to numerically reproduce this experimentation. The numerical results fit reasonably well with the experimental ones, highlighting the great importance of the choice of the constitutive law for the soil, reinforcement and facing. The same model is used to locally investigate the soil/reinforcement interface behaviour during a harmonic loading in steady-state. The confining pressure presents significant variations along the reinforcement strip during the dynamic loading while tensile forces are less affected by the load. Nevertheless, the global interface stability remains acceptable compared to a static load. A second numerical model is proposed, which represents a bigger embankment. The multiphase model is used to represent the reinforced soil and moving coordinates are used to take into account the moving train. Theoretical developments of this model and its implementation into CESAR-LCPC FEM code are detailed. The results indicate that the train speed does not play a big role in the overall response of the structure, in the case of a stiff reinforcement comparable to the experimental one. If the embankment is weaker, the HST speed may be close to shear waves speed within the soil, which has significant consequences into the structure, particularly on the stability of the soil/reinforcement interface. Globally the experimental results and those coming from both numerical models present the same trends: the dynamic effect coming from the train passing leads to the in-crease of displacements and confining pressure close to the highest strips, while tensile forces are less affected by the load. This leads us to the conclusion that the train speed does not have a significant effect on the stability of MSE walls, at least for embankments having similar parameters than the experimental one. However these results strongly depend on the embankment geometry, the way to model the train and the parameters and constitutive laws chosen for the soil, the soil/reinforcement interface and the facing
6

Upper Bound Finite Element Limit Analysis for Problems of Reinforced Earth, Unsupported Tunnels and a Group of Anchors

Sahoo, Jagdish Prasad January 2013 (has links) (PDF)
This thesis presents the implementation of the upper bound limit analysis in combination with finite elements and linear optimization for solving different stability problems in geomechanics under plane strain conditions. Although the nonlinear optimization techniques are becoming quite popular, the linear optimization has been adopted due to its simplicity in implementation and ease in attaining the convergence while performing the analysis. The objectives of the present research work are (i) to reduce the computational effort while using an upper bound finite element limit analysis with linear programming in dealing with geotechnical stability problems, and (ii) to obtain solutions for a few important geotechnical stability problems associated with reinforced earth, unsupported tunnels and a group of anchors. It is also intended to examine the developments of the failure patterns in all the cases. For carrying out the analysis for different stability problems, three noded triangular elements have been used throughout the thesis. The nodal velocities are treated as basic unknown variables and the velocity discontinuities are employed along the interfaces of all the elements. The soil mass is assumed to obey the Mohr-Coulomb’s failure criterion and an associated flow rule. The Mohr-Coulomb yield surface is linearized by means of an exterior regular polygon circumscribing the actual yield circle so that the finite element formulation leads to a linear programming problem. A simple technique has been proposed for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain has been discretized into a number of different regions in which a particular order (number of sides) of the polygon has been specified to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be chosen only in that part of the domain wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth as well as rough strip footings and the results obtained are found to be quite satisfactory. The ultimate bearing capacity of a rigid strip footing placed over granular, cohesive-frictional and purely cohesive soils, reinforced with single and a group of two horizontal layers of reinforcements has been determined. The necessary formulation has been introduced to incorporate the inclusion of reinforcement in the analysis. The efficiency factors, and , to be multiplied with Nc and Nγ for finding the bearing capacity of reinforced foundations, have been established. The results have been obtained (i) for different values of soil friction angles in case of granular and cohesive-frictional soils, and (ii) for different rates at which the cohesion increases with depth for purely cohesive soil under undrained condition. The optimum positions of the reinforcements' layers corresponding to which and becomes maximum, have been established. The effect of the length of the reinforcements on the results has also been analyzed. As compared to cohesive soil, the granular soils, especially with greater values of frictional angle, cause much more predominant increase in the bearing capacity. The stability of a long open vertical trench laid in a fully cohesive and cohesive-frictional soil has been determined with an inclusion of single and a group of two layers of horizontal reinforcements. For different positions of the reinforcement layers, the efficiency factor (ηs), has been determined for several combinations of H/B, m and where H and B refer to height and width of the trench, respectively, and m accounts for the rate at which the cohesion increases linearly with depth for a fully cohesive soil with = 0. The effect of height to width of the long vertical trench on the stability number has been examined for both unreinforced and reinforced soils. The optimal positions of the reinforcements layers, corresponding to which becomes maximum, have been established. The required length of reinforcements to achieve maximum efficiency factor corresponding to optimum depth of reinforcement has also been determined. The magnitude of the maximum efficiency factor increases continuously with an increase in both m and . The effect of pseudo-static horizontal earthquake body forces on the stability of a long unsupported circular tunnel (opening) formed in a cohesive frictional soil has been determined. The stability numbers have been obtained for various values of H/D (H = tunnel cover, D = diameter of the tunnel), internal friction angle of soil, and the horizontal earthquake acceleration coefficient The computations revealed that the values of the stability numbers (i) decreases quite significantly with an increase in , and (ii) become continuously higher for greater values of H/D and . The failure patterns have also been drawn for different combinations of H/D, and . The geometry of the failure zone around the periphery of the tunnel becomes always asymmetrical with an inclusion of horizontal seismic body forces. The interference effect on the stability of two closely spaced parallel (twin) long unsupported circular tunnels formed in fully cohesive and cohesive-frictional soils has been evaluated. The variation of the stability number with S/D has been established for different combinations of H/D, m and ; where D refers to the diameter of each tunnel, S is the clear spacing between the tunnels, and is the internal friction angle of soil and m accounts for the rate at which the cohesion increases linearly with depth for a soil with = 0. On account of the interference of two tunnels, the stability number reduces continuously with a decrease in the spacing between the tunnels. The minimum spacing between the two tunnels required to eliminate the interference effect increases with (i) an increase in H/D and (ii) a decrease in the values of both m and . The failure patterns have also been generated for a few cases with different values of S/D. The size of the failure zone is found to become smaller for greater values of m and . The horizontal pullout capacity of a group of two vertical strip anchors embedded, along the same vertical plane in sand, at shallow depths has been determined. At collapse, it is assumed that the anchor plates are subjected to the same uniform horizontal velocity without any bending or tilt. The pullout resistance increases invariably with increases in the values of embedment ratio, friction angle of the sand mass and anchor-soil interface friction angle. The effect of spacing (S) between the anchors on their group collapse load is examined in detail. For a given embedment ratio, the total group failure load becomes maximum corresponding to a certain optimal spacing (Sopt). The values of Sopt increases with an increase in the value of , but the changes in the value of H/B and do not have any significant effect on Sopt. The vertical uplift capacity of a group of two horizontal strip plate anchors with the common vertical axis buried in purely cohesive as well as in cohesive frictional soil has been computed. The variation of the uplift factors Fc, Fq and F , due to the contributions of soil cohesion, surcharge pressure and unit weight, respectively, has been evaluated for different combinations of S/B and H/B. As compared to a single isolated anchor, the group of two anchors generates significantly greater magnitude of Fc. On the other hand, the factors Fq and F , for a group of two anchors are found to become almost equal to that of a single isolated anchor as long as the levels of the lower plate in the group and the single isolated anchor are kept the same. For the group of two horizontal strip plate anchors in purely cohesive soil, an increase of cohesion of soil mass with depth and the effect of self weight of the soil have been incorporated. The uplift factor Fcy both due to cohesion and unit weight of the soil has also been computed for the anchors embedded in clay under undrained condition. For given embedment ratios, the factor Fcy increases linearly with an increase in the normalized unit weight of soil mass upto a certain value before attaining a certain maximum magnitude. The computational results obtained for different research problems would be useful for design.

Page generated in 0.0381 seconds