• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modéliser l'évolution de la relation génotype-phénotypes dans des réseaux de régulation / Evolutionary modelling of genotype-phenotypes relation in regulatory networks

Odorico, Andréas 12 December 2019 (has links)
L’identification de l’information génétique comme support de l’hérédité a accordé aux gènes une importance majeure dans l’étude de l’évolution et des mécanismes permettant la mise en place des caractères. Cependant, les processus permettant à une variation génétique de se traduire en variation phénotypique sont complexes et leur identification est centrale pour la compréhension de l’évolution.On parle de relation génotype-phénotype pour désigner la fonction qui relie l’espace des gènes à celui des caractères. Étudier les propriétés de cette relation permet d’identifier des mécanismes pouvant altérer les trajectoires évolutives et améliorer notre compréhension de l’évolution de systèmes vivants. Je défends notamment l’intérêt d’étudier mécanistiquement les processus par lesquels une variation génétique donne naissance à une variation phénotypique, et emploie, pour ce faire, un modèle de réseau de régulation transcriptionnelle.Ici, j’étudie les effets d’une information environnementale sur la relation génotype-phénotype et ses propriétés (notamment sa canalisation, sa robustesse à des perturbations génétiques ou environnementales). Pour ce faire, l’évolution de réseaux de régulation simulés est étudiée en présence d’un gène senseur de l’environnement ou d’une forme d’hérédité non génétique.Ce manuscrit débute par une discussion générale de l’intérêt des approches par modélisation, notamment pour l’étude de phénomènes complexes. Enfin, les résultats obtenus sont présentés en regard des discussions sur la nécessité d’une « synthèse évolutive étendue » pour décrire le processus évolutif d’une manière difficilement accessible par une approche gène-centrée. / The identification of genetic information as the as a physical basis for heredity put genes in the spotlight for the study of evolution and of the mechanisms shaping characters. However, the processes allowing genetic variation to translate into phenotypic variation are complex and their identification is crucial for the study of evolution.Genotype-phenotype relationship designates the function connecting the genotype and the phenotype spaces. Studying its properties will shed the light on mechanisms able to alter evolutionary trajectories and improve our understanding of the evolutionary process. I defend the importance of a mechanistic study of the processes translating genetic variation into a phenotypic one and use a model of transcriptional regulation networks to do so.This study tackles the topic of the effects of an environmental information on the genotype-phenotype relationship and its properties (especially canalization, the robustness of a phenotype to genetic or environmental disturbances). To do so, I studied the evolution of simulated regulatory networks in presence of a gene acting as an environmental sensor as well as in presence of non genetic inheritance.This document begins with a general discussion on the purpose of modelling approaches and the insights they bring on the study of complex phenomena. The results are discussed in the light of the debates on the necessity of an « evolutionary extended synthesis » to describe the evolutionary processes in a way hardly available with the gene-centered approach
2

Du génotype au phénotype : Analyse comparée de mutations du gène de déficience intellectuelle PAK3 / From Genotype to Phenotype : Comparative Analysis of PAK3 Intellectual Disability Gene's Mutations

Duarte, Kévin 11 December 2019 (has links)
La déficience intellectuelle (DI) est souvent associée à d’autres signes cliniques morphologiques et psychiatriques mais cette comorbidité est peu caractérisée pour la DI associée à un gène donné. Ainsi les mutations du gène p21-activated kinase 3 (PAK3) sont responsable d’un large spectre clinique, allant de la DI légère à des DI sévères associées parfois à des malformations du cerveau. Nous avançons l’hypothèse que les différentes mutations d’un même gène peuvent affecter divers paramètres biochimiques et affecter de manière différentielle les voies de signalisation impliquées dans la plasticité synaptique et dans le développement du cerveau. Pour valider notre hypothèse, nous avons caractérisé une nouvelle mutation responsable d’une déficience intellectuelle sévère associée à une agénésie du corps calleux et une microcéphalie. Cette mutation supprime l’activité kinase, n’affecte pas la stabilité de la protéine et augmente l’interaction avec un GEF de la famille PIX. Ces derniers résultats identifient une nouvelle voie de signalisation impactée par certaines mutations de PAK3. L’expression de ce variant modifie la morphologie cellulaire et la dynamique des adhésions focales, ainsi que les propriétés migratoires des cellules, ce qui pourraient relier les défauts biochimiques aux défauts de certaines fonctions cellulaires. De manière intéressante, ces caractéristiques sont aussi retrouvées pour un autre variant responsable d’une clinique également très sévère. Nous avons également caractérisé d’autres mutations associées à des phénotypes moins sévères. La synthèse de nos résultats nous permet ici de proposer un modèle explicatif de la relation génotype-phénotype pour les mutations de déficience intellectuelle liées au gène PAK3, intégrant des défauts neurodéveloppementaux et de plasticité synaptique. / Intellectual Disability (ID) is often associated with other morphological and psychiatric clinical signs, but this comorbidity is poorly characterized for ID associated with a given gene. Thus mutations of the p21-activated kinase 3 (PAK3) gene are responsible for a broad clinical spectrum, ranging from mild ID to severe ID, sometimes associated with brain malformations. We hypothesize that different mutations of the same gene may affect various biochemical parameters and differentially affect the signaling pathways involved in synaptic plasticity and brain development. To validate our hypothesis, we characterized a new mutation responsible for a severe intellectual disability associated with agenesis of the corpus callosum and microcephaly. This mutation suppresses kinase activity, does not affect protein stability and increases the interaction with a GEF of the PIX family. These latest results identify a new signaling pathway impacted by certain PAK3 mutations. The expression of this variant modifies the cellular morphology and the dynamics of the focal adhesions, as well as cell migratory properties, which could link the biochemical defects to those of certain cell functions. Interestingly, these features are also found for another variant responsible for a very similar severe clinical spectrum. We have also characterized other mutations associated with less severe phenotypes. The synthesis of our results allows us to propose an explanatory model of the genotype-phenotype relationship integrating neurodevelopmental and synaptic plasticity defects for intellectual disability and other clinical traits associated to the PAK3 gene mutations.
3

Origines génétiques de la variation de tolérance au stress au sein de populations naturelles de levures / Genetic basis of stress tolerance in natural populations of yeast

Sigwalt, Anastasie 03 June 2016 (has links)
Une question centrale de la génétique moderne est de mieux comprendre comment la variation génétique présente au sein d’individus d’une même espèce influence la diversité phénotypique et l’évolution. La levure modèle Saccharomyces cerevisiae offre une occasion unique d’apporter des éléments de réponse à cette question à travers la dissection de l’architecture génétique de la variation de tolérance à des stress environnementaux à l’échelle d’une population. Mon étude révèle un niveau supplémentaire de complexité de la relation génotype-phénotype où finalement les caractères supposés les plus simples, dits Mendéliens (déterminisme strictement monogénique) peuvent se révéler être complexes (déterminisme multigénique) selon le fond génétique en raison de l’action de gènes modificateurs, d’interactions épistatiques et/ou de suppresseurs. Toutefois, les processus évolutifs peuvent être bien différents en fonction des espèces. Afin de mieux les décrypter, je me suis également intéressée à Lachancea kluyveri, une levure phylogénétiquement distante de S. cerevisiae. Cette espèce présente une diversité génétique plus élevée et constitue une ressource encore peu exploitée. L’exploration de la diversité phénotypique et la détermination de leurs origines génétiques initiées dans cette étude sont extrêmement prometteuses et apportent de solides fondations pour l’étude à la fois de l’architecture génétique des caractères et de l’évolution de la relation génotype-phénotype au sein de diverses espèces de levures. / A central issue of modern genetics is to better understand how genetic variations between individuals within a species influence the phenotypic diversity and the evolution. The budding yeast Saccharomyces cerevisiae as a model organism offers a unique opportunity to address this issue through the dissection of the genetic architecture of stress tolerance across a population. My study reveals an additional level of complexity of the genotype-phenotype relationship. Indeed, simple Mendelian traits (monogenic determinism) may become more complex (multigenic determinism) depending on genetic background due to the action of modifier genes, epistatic interactions and / or suppressors. However, evolutionary processes can be very different depending on the species. That is why a non-conventional yeast species namely Lachancea kluyveri (formerly S. kluyveri) was also studied. This species distantly related to S. cerevisiae has a higher genetic diversity and remains a relatively unexplored resource. The exploration of the phenotypic diversity and the determination of the genetic origins initiated in this study lay foundations for the analysis of the genetic architecture of traits and the evolution of the genotype-phenotype relationship within diverse yeast species.

Page generated in 0.1038 seconds