• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detecting Communities in Networks and Performance Prediction Based on Relation Strength Measurement

Behera, Soom Satyam January 2016 (has links)
Complex networks is an interdisciplinary research area which focuses on the study of properties of complex systems that have many functional or structural subunits. Community detection algorithms are one of the major approaches to analyse complex networks with multilevel or overlapping community structures. This research work focuses on constructing a novel community detection approach for simplification of a given complex demographic network. The general process of the abstraction from concrete problems as well as the general definition of communities have not been well defined and all the existing methods are derived from specific backgrounds, leaving the reliabilities in other fields open to ques- tion. This specificity of the existing methods reveals the need for a general approach for community definition and detection. Here, we devise a general procedure to find community structures in concrete problems by classifying the concrete networks into two basic types: Transmission networks and Similarity networks. The relation among nodes in transmission networks are constructed by material transmission and the ones in similarity network are constructed by the similarity in properties of the nodes. We show that both the types can be represented based upon an unified graph model. Based on the model, we propose a generic approach, Relation Strength Measurement (RSM), to define the communities. We have demonstrated that the Effective Resistance Function (ERF), from the Klein and Randic’s electrical network model, is applicable for quantifying the relation among nodes. We have also introduced a community threshold parameter (CP) based on which, the RSM algorithm categorizes the network nodes into communities. We have compared the performance of our algorithm with other well known community detection methods. The simulation results show that the algorithm accurately obtains the division of community structure both in real-world and synthetic networks.
2

Extracting relationships of research topics in information-related domain by analyzing thesis

Chen, Dao-hui 02 July 2003 (has links)
With the coming of knowledge management era, academic institutions also begin to engage in knowledge management (KM) activities, hoping that researchers can understand the relationship between research topics. However, most of the KM activities focusing on academic papers need research¡¦s effort to code and classify paper¡¦s content, and there is still no measurement of relationship between research topics from prior researches. Therefore, this thesis will propose a methodology to measure the relationship between research topics and grab the data of National Central Library from internet to construct a knowledge relationship system. This system will analyze both dissertation¡¦s and thesis¡¦ content, such as keywords, abstracts, etc., and calculate two measurements that are relation strength and relation similarity to assess the direct and indirect relationship between two research topics. Moreover, this thesis found a phenomenon that there is high diversity of Chinese keyword¡¦s usage and the Chinese translation of English keyword. To overcome this incident, the database for Chinese keywords is built. This database will excerpt the mapping of Chinese keywords usage and its translation from the abstract of thesis. Finally, the trend of research topics in information-related domain using different aspects, such as different years, different schools and different departments are analyzed. The result of analysis includes:

Page generated in 0.1075 seconds