Spelling suggestions: "subject:"elational representations"" "subject:"arelational representations""
1 |
Représentations relationnelles et apprentissage interactif pour l'apprentissage efficace du comportement coopératif / Relational representations and interactive learning for efficient cooperative behavior learningMunzer, Thibaut 21 April 2017 (has links)
Cette thèse présente de nouvelles approches permettant l’apprentissage efficace et intuitif de plans de haut niveau pour les robots collaboratifs. Plus précisément, nous étudions l’application d’algorithmes d’apprentissage par démonstration dans des domaines relationnels. L’utilisation de domaines relationnels pour représenter le monde permet de simplifier la représentation de comportements concurrents et collaboratifs. Nous avons commencé par développer et étudier le premier algorithme d’apprentissage par renforcement inverse pour domaines relationnels. Nous avons ensuite présenté comment utiliser le formalisme RAP pour représenter des tâches collaboratives comprenant un robot et un opérateur humain. RAP est une extension des MDP relationnels qui permet de modéliser des activités concurrentes. Utiliser RAP nous a permis de représenter à la fois l’humain et le robot dans le même processus, mais également de modéliser des activités concurrentes du robot. Sous ce formalisme, nous avons montré qu’il était possible d’apprendre le comportement d’une équipe, à la fois comme une politique et une récompense. Si des connaissances a priori sur la tâche à réaliser sont disponibles, il est possible d’utiliser le même algorithme pour apprendre uniquement les préférences de l’opérateur. Cela permet de s’adapter à l’utilisateur. Nous avons montré que l’utilisation des représentations relationnelles permet d’apprendre des comportements collaboratifs à partir de peu de démonstrations.Ces comportements sont à la fois robustes au bruit, généralisables à de nouveaux états, et transférables à de nouveaux domaines (par exemple en ajoutant des objets). Nous avons également introduit une architecture d’apprentissage interactive qui permet au système de faire moins d’erreurs tout en demandant moins d’efforts à l’opérateur humain. Le robot, en estimant sa confiance dans ses décisions, est capable de demander des instructions quand il est incertain de l’activité à réaliser. Enfin, nous avons implémenté ces approches sur un robot et montré leurs impacts potentiels dans un scenario réaliste. / This thesis presents new approaches toward efficient and intuitive high-level plan learning for cooperative robots. More specifically this work study Learning from Demonstration algorithm for relational domains. Using relational representation to model the world, simplify representing concurrentand cooperative behavior.We have first developed and studied the first algorithm for Inverse ReinforcementLearning in relational domains. We have then presented how one can use the RAP formalism to represent Cooperative Tasks involving a robot and a human operator. RAP is an extension of the Relational MDP framework that allows modeling concurrent activities. Using RAP allow us to represent both the human and the robot in the same process but also to model concurrent robot activities. Under this formalism, we have demonstrated that it is possible to learn behavior, as policy and as reward, of a cooperative team. Prior knowledge about the task can also be used to only learn preferences of the operator.We have shown that, using relational representation, it is possible to learn cooperative behaviors from a small number of demonstration. That these behaviors are robust to noise, can generalize to new states and can transfer to different domain (for example adding objects). We have also introduced an interactive training architecture that allows the system to make fewer mistakes while requiring less effort from the human operator. By estimating its confidence the robot is able to ask for instructions when the correct activity to dois unsure. Lastly, we have implemented these approaches on a real robot and showed their potential impact on an ecological scenario.
|
2 |
Processos de decisão Markovianos com probabilidades imprecisas e representações relacionais: algoritmos e fundamentos. / Markov decision processes with imprecise probabilities and relational representations: foundations and algorithms.Shirota Filho, Ricardo 03 May 2012 (has links)
Este trabalho é dedicado ao desenvolvimento teórico e algorítmico de processos de decisão markovianos com probabilidades imprecisas e representações relacionais. Na literatura, essa configuração tem sido importante dentro da área de planejamento em inteligência artificial, onde o uso de representações relacionais permite obter descrições compactas, e o emprego de probabilidades imprecisas resulta em formas mais gerais de incerteza. São três as principais contribuições deste trabalho. Primeiro, efetua-se uma discussão sobre os fundamentos de tomada de decisão sequencial com probabilidades imprecisas, em que evidencia-se alguns problemas ainda em aberto. Esses resultados afetam diretamente o (porém não restrito ao) modelo de interesse deste trabalho, os processos de decisão markovianos com probabilidades imprecisas. Segundo, propõe-se três algoritmos para processos de decisão markovianos com probabilidades imprecisas baseadas em programação (otimização) matemática. E terceiro, desenvolvem-se ideias propostas por Trevizan, Cozman e de Barros (2008) no uso de variantes do algoritmo Real-Time Dynamic Programming para resolução de problemas de planejamento probabilístico descritos através de versões estendidas da linguagem de descrição de domínios de planejamento (PPDDL). / This work is devoted to the theoretical and algorithmic development of Markov Decision Processes with Imprecise Probabilities and relational representations. In the literature, this configuration is important within artificial intelligence planning, where the use of relational representations allow compact representations and imprecise probabilities result in a more general form of uncertainty. There are three main contributions. First, we present a brief discussion of the foundations of decision making with imprecise probabilities, pointing towards key questions that remain unanswered. These results have direct influence upon the model discussed within this text, that is, Markov Decision Processes with Imprecise Probabilities. Second, we propose three algorithms for Markov Decision Processes with Imprecise Probabilities based on mathematical programming. And third, we develop ideas proposed by Trevizan, Cozman e de Barros (2008) on the use of variants of Real-Time Dynamic Programming to solve problems of probabilistic planning described by an extension of the Probabilistic Planning Domain Definition Language (PPDDL).
|
3 |
Processos de decisão Markovianos com probabilidades imprecisas e representações relacionais: algoritmos e fundamentos. / Markov decision processes with imprecise probabilities and relational representations: foundations and algorithms.Ricardo Shirota Filho 03 May 2012 (has links)
Este trabalho é dedicado ao desenvolvimento teórico e algorítmico de processos de decisão markovianos com probabilidades imprecisas e representações relacionais. Na literatura, essa configuração tem sido importante dentro da área de planejamento em inteligência artificial, onde o uso de representações relacionais permite obter descrições compactas, e o emprego de probabilidades imprecisas resulta em formas mais gerais de incerteza. São três as principais contribuições deste trabalho. Primeiro, efetua-se uma discussão sobre os fundamentos de tomada de decisão sequencial com probabilidades imprecisas, em que evidencia-se alguns problemas ainda em aberto. Esses resultados afetam diretamente o (porém não restrito ao) modelo de interesse deste trabalho, os processos de decisão markovianos com probabilidades imprecisas. Segundo, propõe-se três algoritmos para processos de decisão markovianos com probabilidades imprecisas baseadas em programação (otimização) matemática. E terceiro, desenvolvem-se ideias propostas por Trevizan, Cozman e de Barros (2008) no uso de variantes do algoritmo Real-Time Dynamic Programming para resolução de problemas de planejamento probabilístico descritos através de versões estendidas da linguagem de descrição de domínios de planejamento (PPDDL). / This work is devoted to the theoretical and algorithmic development of Markov Decision Processes with Imprecise Probabilities and relational representations. In the literature, this configuration is important within artificial intelligence planning, where the use of relational representations allow compact representations and imprecise probabilities result in a more general form of uncertainty. There are three main contributions. First, we present a brief discussion of the foundations of decision making with imprecise probabilities, pointing towards key questions that remain unanswered. These results have direct influence upon the model discussed within this text, that is, Markov Decision Processes with Imprecise Probabilities. Second, we propose three algorithms for Markov Decision Processes with Imprecise Probabilities based on mathematical programming. And third, we develop ideas proposed by Trevizan, Cozman e de Barros (2008) on the use of variants of Real-Time Dynamic Programming to solve problems of probabilistic planning described by an extension of the Probabilistic Planning Domain Definition Language (PPDDL).
|
Page generated in 0.1789 seconds