• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche développementale de la perception pour un robot humanoïde

Lyubova, Natalia 30 October 2013 (has links) (PDF)
Les robots de service ou d'assistance doivent évoluer dans un environnent humain en constant changement, souvent imprévisible. Ils doivent donc être capables de s'adapter à ces changements, idéalement de manière autonome, afin de ne pas dépendre de la présence constante d'une supervision. Une telle adaptation en environnements non structurés nécessite notamment une détection et un apprentissage continu des nouveaux objets présents, que l'on peut imaginer inspirés des enfants, basés sur l'interaction avec leur parents et la manipulation motivée par la curiosité. Notre travail vise donc à concevoir une approche développementale permettant à un robot humanoïde de percevoir son environnement. Nous nous inspirons à la fois de la perception humaine en termes de fonctionnalités et du développements cognitifs observé chez les infants. Nous proposons une approche qui permet à un robot humanoïde d'ex- plorer son environnement de manière progressive, comme un enfant, grâce à des interactions physiques et sociales. Suivant les principes de la robotique développementale, nous nous concentrons sur l'apprentissage progressif, continu et autonome qui ne nécessite pas de connaissances a priori des objets. Notre système de perception débute par la segmentation de l'espace visuel en proto-objets, qui serviront d'unités d'attention. Chaque proto-objet est représenté par des carac- téristiques bas-niveaux (la couleur et la texture) et sont eux-mêmes intégrés au sein de caractéristiques de plus haut niveau pour ensuite former un modèle multi-vues. Cet apprentissage s'effectue de manière incrémentale et chaque proto-objet est associé à une ou plusieurs entités physiques distinctes. Les entités physiques sont ensuite classés en trois catégories : parties du robot, parties des humains et objets. La caractérisation est basée sur l'analyse de mouvements des entités physiques provenant de la vision ainsi que sur l'information mutuelle entre la vison et proprioception. Une fois que le robot est capable de catégoriser les entités, il se concentre sur l'interaction active avec les objets permettant ainsi d'acquérir de nouvelles informations sur leur apparence qui sont intégrés dans leurs modèles de représen- tation. Ainsi, l'interaction améliore les connaissances sur les objets et augmente la quantité d'information dans leurs modèles. Notre système de perception actif est évalué avec le robot humanoïde iCub en utilisant une base expérimentale de 20 objets. Le robot apprend par interaction avec un partenaire humain ainsi que par ses propres actions sur les objets. Notre système est capable de créer de manière non supervisée des modèles cohérents des différentes entités et d'améliorer les modèles des objets par apprentissage interactif et au final de reconnaître des objets avec 88.5% de réussite.
2

Conception d'un Cadre Formel d'Interaction pour la Découverte Scientifique Computationelle

Dartnell, Christopher 18 June 2008 (has links) (PDF)
L'utilisation d'outils issus de la découverte scientifique computationnelle a montré un effet inattendu de l'interaction avec une machine apprenante : l'apparition d'un jeu dialectique de localisation et de correction d'erreurs, aussi bien dans les règles apprises par la machine que dans l'ontologie é́crite par l'utilisateur. Ces erreurs mettent en é́vidence des biais de modé́lisation ou de mesure, ainsi que des biais liés aux exemples fournis à la machine. C'est en ré́alité ce processus dialectique qui est exploité dans les diffé́rentes applications, et l'apprentissage ne sert finalement qu'à géné́rer des contradictions entre la théorie de la machine et celle de l'utilisateur. Cette constatation m'a incité́ à dé́finir un cadre formel pour cette dialectique. Dans ce contexte, j'ai décidé́ de positionner ce mode d'interaction avec une machine apprenante par rapports aux principaux paradigmes d'apprentissage, afin de déterminer un protocole d'interaction adapté à la dé́couverte scientifique computationnelle, c'est à dire adapté́ à l'apprentissage humain comme à l'apprentissage machine, et tenant compte d'une certaine démarche scientifique. Le protocole d'interaction vers lequel je me suis orienté́ peut être considé́ré́ comme une extension de l'apprentissage par requêtes [Angluin, 1988] proposant une restriction des requêtes d'appartenance à des expé́riences finies, et une distribution des requêtes d'é́quivalence sur une communauté́ d'apprenti. Une fois l'intuition de ce protocole dé́gagé́e, sa dé́finition logique m'a occupé un certain temps,<br />et je pré́sente dans ce document une dé́finition logique de jugements modaux fondée sur une extension du carré́ des oppositions.
3

Passage à l'échelle des méthodes de recherche sémantique dans les grandes bases d'images

Gorisse, David 20 December 2010 (has links) (PDF)
Avec la révolution numérique de cette dernière décennie, la quantité de photos numériques mise à disposition de chacun augmente plus rapidement que la capacité de traitement des ordinateurs. Les outils de recherche actuels ont été conçus pour traiter de faibles volumes de données. Leur complexité ne permet généralement pas d'effectuer des recherches dans des corpus de grande taille avec des temps de calculs acceptables pour les utilisateurs. Dans cette thèse, nous proposons des solutions pour passer à l'échelle les moteurs de recherche d'images par le contenu. Dans un premier temps, nous avons considéré les moteurs de recherche automatique traitant des images indexées sous la forme d'histogrammes globaux. Le passage à l'échelle de ces systèmes est obtenu avec l'introduction d'une nouvelle structure d'index adaptée à ce contexte qui nous permet d'effectuer des recherches de plus proches voisins approximées mais plus efficaces. Dans un second temps, nous nous sommes intéressés à des moteurs plus sophistiqués permettant d'améliorer la qualité de recherche en travaillant avec des index locaux tels que les points d'intérêt. Dans un dernier temps, nous avons proposé une stratégie pour réduire la complexité de calcul des moteurs de recherche interactifs. Ces moteurs permettent d'améliorer les résultats en utilisant des annotations que les utilisateurs fournissent au système lors des sessions de recherche. Notre stratégie permet de sélectionner rapidement les images les plus pertinentes à annoter en optimisant une méthode d'apprentissage actif.
4

Apprentissage Interactif en Robotique Autonome : vers de nouveaux types d'IHM

Rolland de Rengervé, Antoine 13 December 2013 (has links) (PDF)
Un robot autonome collaborant avec des humains doit être capable d'apprendre à se déplacer et à manipuler des objets dans la même tâche. Dans une approche classique, on considère des modules fonctionnels indépendants gérant les différents aspects de la tâche (navigation, contrôle du bras...). A l'opposé, l'objectif de cette thèse est de montrer que l'apprentissage de tâches de natures différentes peut être abordé comme un problème d'apprentissage d'attracteurs sensorimoteurs à partir d'un petit nombre de structures non spécifiques à une tâche donnée. Nous avons donc proposé une architecture qui permet l'apprentissage et l'encodage d'attracteurs pour réaliser aussi bien des tâches de navigation que de contrôle d'un bras.Comme point de départ, nous nous sommes appuyés sur un modèle inspiré des cellules de lieu pour la navigation d'un robot autonome. Des apprentissages en ligne et interactifs de couples lieu/action sont suffisants pour faire émerger des bassins d'attraction permettant à un robot autonome de suivre une trajectoire. En interagissant avec le robot, on peut corriger ou orienter son comportement. Les corrections successives et leur encodage sensorimoteur permettent de définir le bassin d'attraction de la trajectoire. Ma première contribution a été d'étendre ce principe de construction d'attracteurs sensorimoteurs à un contrôle en impédance pour un bras robotique. Lors du maintien d'une posture proprioceptive, les mouvements du bras peuvent être corrigés par une modification en-ligne des commandes motrices exprimées sous la forme d'activations musculaires. Les attracteurs moteurs résultent alors des associations simples entre l'information proprioceptive du bras et ces commandes motrices. Dans un second temps, j'ai montré que le robot pouvait apprendre des attracteursvisuo-moteurs en combinant les informations proprioceptives et visuelles. Le contrôle visuo-moteur correspond à un homéostat qui essaie de maintenir un équilibre entre ces deux informations. Dans le cas d'une information visuelle ambiguë, le robot peut percevoir un stimulus externe (e.g. la main d'un humain) comme étant sa propre pince. Suivant le principe d'homéostasie, le robot agira pour réduire l'incohérence entre cette information externe et son information proprioceptive. Il exhibera alors un comportement d'imitation immédiate des gestes observés. Ce mécanisme d'homéostasie, complété par une mémoire des séquences observées et l'inhibition des actions durant l'observation, permet au robot de réaliser des imitations différées et d'apprendre par observation. Pour des tâches plus complexes, nous avons aussi montré que l'apprentissage de transitions peut servir de support pour l'apprentissage de séquences de gestes, comme c'était le cas pour l'apprentissage de cartes cognitives en navigation. L'utilisation de contextes motivationnels permet alors le choix entre les différentes séquences apprises.Nous avons ensuite abordé le problème de l'intégration dans une même architecture de comportements impliquant une navigation visuomotrice et le contrôle d'un bras robotique pour la préhension d'objets. La difficulté est de pouvoir synchroniser les différentes actions afin que le robot agisse de manière cohérente. Les comportements erronés du robot sont détectés grâce à l'évaluation des actions proposées par le modèle vis à vis des corrections imposées par le professeur humain. Un apprentissage de ces situations sous la forme de contextes multimodaux modulant la sélection d'action permet alors d'adapter le comportement afin que le robot reproduise la tâche désirée.Pour finir, nous présentons les perspectives de ce travail en terme de contrôle sensorimoteur, pour la navigation comme pour le contrôle d'un bras robotique, et son extension aux questions d'interface homme/robot. Nous insistons sur le fait que différents types d'imitation peuvent être le fruit des propriétés émergentes d'une architecture de contrôle sensorimotrice.
5

Représentations relationnelles et apprentissage interactif pour l'apprentissage efficace du comportement coopératif / Relational representations and interactive learning for efficient cooperative behavior learning

Munzer, Thibaut 21 April 2017 (has links)
Cette thèse présente de nouvelles approches permettant l’apprentissage efficace et intuitif de plans de haut niveau pour les robots collaboratifs. Plus précisément, nous étudions l’application d’algorithmes d’apprentissage par démonstration dans des domaines relationnels. L’utilisation de domaines relationnels pour représenter le monde permet de simplifier la représentation de comportements concurrents et collaboratifs. Nous avons commencé par développer et étudier le premier algorithme d’apprentissage par renforcement inverse pour domaines relationnels. Nous avons ensuite présenté comment utiliser le formalisme RAP pour représenter des tâches collaboratives comprenant un robot et un opérateur humain. RAP est une extension des MDP relationnels qui permet de modéliser des activités concurrentes. Utiliser RAP nous a permis de représenter à la fois l’humain et le robot dans le même processus, mais également de modéliser des activités concurrentes du robot. Sous ce formalisme, nous avons montré qu’il était possible d’apprendre le comportement d’une équipe, à la fois comme une politique et une récompense. Si des connaissances a priori sur la tâche à réaliser sont disponibles, il est possible d’utiliser le même algorithme pour apprendre uniquement les préférences de l’opérateur. Cela permet de s’adapter à l’utilisateur. Nous avons montré que l’utilisation des représentations relationnelles permet d’apprendre des comportements collaboratifs à partir de peu de démonstrations.Ces comportements sont à la fois robustes au bruit, généralisables à de nouveaux états, et transférables à de nouveaux domaines (par exemple en ajoutant des objets). Nous avons également introduit une architecture d’apprentissage interactive qui permet au système de faire moins d’erreurs tout en demandant moins d’efforts à l’opérateur humain. Le robot, en estimant sa confiance dans ses décisions, est capable de demander des instructions quand il est incertain de l’activité à réaliser. Enfin, nous avons implémenté ces approches sur un robot et montré leurs impacts potentiels dans un scenario réaliste. / This thesis presents new approaches toward efficient and intuitive high-level plan learning for cooperative robots. More specifically this work study Learning from Demonstration algorithm for relational domains. Using relational representation to model the world, simplify representing concurrentand cooperative behavior.We have first developed and studied the first algorithm for Inverse ReinforcementLearning in relational domains. We have then presented how one can use the RAP formalism to represent Cooperative Tasks involving a robot and a human operator. RAP is an extension of the Relational MDP framework that allows modeling concurrent activities. Using RAP allow us to represent both the human and the robot in the same process but also to model concurrent robot activities. Under this formalism, we have demonstrated that it is possible to learn behavior, as policy and as reward, of a cooperative team. Prior knowledge about the task can also be used to only learn preferences of the operator.We have shown that, using relational representation, it is possible to learn cooperative behaviors from a small number of demonstration. That these behaviors are robust to noise, can generalize to new states and can transfer to different domain (for example adding objects). We have also introduced an interactive training architecture that allows the system to make fewer mistakes while requiring less effort from the human operator. By estimating its confidence the robot is able to ask for instructions when the correct activity to dois unsure. Lastly, we have implemented these approaches on a real robot and showed their potential impact on an ecological scenario.
6

Passage à l’échelle des méthodes de recherche sémantique dans les grandes bases d’images / Scalable search engines for content-based image retrieval task in huge image database

Gorisse, David 17 December 2010 (has links)
Avec la révolution numérique de cette dernière décennie, la quantité de photos numériques mise à disposition de chacun augmente plus rapidement que la capacité de traitement des ordinateurs. Les outils de recherche actuels ont été conçus pour traiter de faibles volumes de données. Leur complexité ne permet généralement pas d'effectuer des recherches dans des corpus de grande taille avec des temps de calculs acceptables pour les utilisateurs. Dans cette thèse, nous proposons des solutions pour passer à l'échelle les moteurs de recherche d'images par le contenu. Dans un premier temps, nous avons considéré les moteurs de recherche automatique traitant des images indexées sous la forme d'histogrammes globaux. Le passage à l'échelle de ces systèmes est obtenu avec l'introduction d'une nouvelle structure d'index adaptée à ce contexte qui nous permet d'effectuer des recherches de plus proches voisins approximées mais plus efficaces. Dans un second temps, nous nous sommes intéressés à des moteurs plus sophistiqués permettant d'améliorer la qualité de recherche en travaillant avec des index locaux tels que les points d'intérêt. Dans un dernier temps, nous avons proposé une stratégie pour réduire la complexité de calcul des moteurs de recherche interactifs. Ces moteurs permettent d'améliorer les résultats en utilisant des annotations que les utilisateurs fournissent au système lors des sessions de recherche. Notre stratégie permet de sélectionner rapidement les images les plus pertinentes à annoter en optimisant une méthode d'apprentissage actif. / In this last decade, would the digital revolution and its ancillary consequence of a massive increases in digital picture quantities. The database size grow much faster than the processing capacity of computers. The current search engine which conceived for small data volumes do not any more allow to make searches in these new corpus with acceptable response times for users.In this thesis, we propose scalable content-based image retrieval engines.At first, we considered automatic search engines where images are indexed with global histograms. Secondly, we were interested in more sophisticated engines allowing to improve the search quality by working with bag of feature. In a last time, we proposed a strategy to reduce the complexity of interactive search engines. These engines allow to improve the results by using labels which the users supply to the system during the search sessions.
7

Apprentissage Interactif en Robotique Autonome : vers de nouveaux types d'IHM / Interactive Learning in Autonomous Robotics : towards new kinds of HMI

Rolland de Rengerve, Antoine 13 December 2013 (has links)
Un robot autonome collaborant avec des humains doit être capable d'apprendre à se déplacer et à manipuler des objets dans la même tâche. Dans une approche classique, on considère des modules fonctionnels indépendants gérant les différents aspects de la tâche (navigation, contrôle du bras...). A l'opposé, l'objectif de cette thèse est de montrer que l'apprentissage de tâches de natures différentes peut être abordé comme un problème d'apprentissage d'attracteurs sensorimoteurs à partir d'un petit nombre de structures non spécifiques à une tâche donnée. Nous avons donc proposé une architecture qui permet l'apprentissage et l'encodage d'attracteurs pour réaliser aussi bien des tâches de navigation que de contrôle d'un bras.Comme point de départ, nous nous sommes appuyés sur un modèle inspiré des cellules de lieu pour la navigation d'un robot autonome. Des apprentissages en ligne et interactifs de couples lieu/action sont suffisants pour faire émerger des bassins d'attraction permettant à un robot autonome de suivre une trajectoire. En interagissant avec le robot, on peut corriger ou orienter son comportement. Les corrections successives et leur encodage sensorimoteur permettent de définir le bassin d'attraction de la trajectoire. Ma première contribution a été d'étendre ce principe de construction d'attracteurs sensorimoteurs à un contrôle en impédance pour un bras robotique. Lors du maintien d'une posture proprioceptive, les mouvements du bras peuvent être corrigés par une modification en-ligne des commandes motrices exprimées sous la forme d'activations musculaires. Les attracteurs moteurs résultent alors des associations simples entre l'information proprioceptive du bras et ces commandes motrices. Dans un second temps, j'ai montré que le robot pouvait apprendre des attracteursvisuo-moteurs en combinant les informations proprioceptives et visuelles. Le contrôle visuo-moteur correspond à un homéostat qui essaie de maintenir un équilibre entre ces deux informations. Dans le cas d'une information visuelle ambiguë, le robot peut percevoir un stimulus externe (e.g. la main d'un humain) comme étant sa propre pince. Suivant le principe d'homéostasie, le robot agira pour réduire l'incohérence entre cette information externe et son information proprioceptive. Il exhibera alors un comportement d'imitation immédiate des gestes observés. Ce mécanisme d'homéostasie, complété par une mémoire des séquences observées et l'inhibition des actions durant l'observation, permet au robot de réaliser des imitations différées et d'apprendre par observation. Pour des tâches plus complexes, nous avons aussi montré que l'apprentissage de transitions peut servir de support pour l'apprentissage de séquences de gestes, comme c'était le cas pour l'apprentissage de cartes cognitives en navigation. L'utilisation de contextes motivationnels permet alors le choix entre les différentes séquences apprises.Nous avons ensuite abordé le problème de l'intégration dans une même architecture de comportements impliquant une navigation visuomotrice et le contrôle d'un bras robotique pour la préhension d'objets. La difficulté est de pouvoir synchroniser les différentes actions afin que le robot agisse de manière cohérente. Les comportements erronés du robot sont détectés grâce à l'évaluation des actions proposées par le modèle vis à vis des corrections imposées par le professeur humain. Un apprentissage de ces situations sous la forme de contextes multimodaux modulant la sélection d'action permet alors d'adapter le comportement afin que le robot reproduise la tâche désirée.Pour finir, nous présentons les perspectives de ce travail en terme de contrôle sensorimoteur, pour la navigation comme pour le contrôle d'un bras robotique, et son extension aux questions d'interface homme/robot. Nous insistons sur le fait que différents types d'imitation peuvent être le fruit des propriétés émergentes d'une architecture de contrôle sensorimotrice. / An autonomous robot collaborating with humans should be able to learn how to navigate and manipulate objects in the same task. In a classical approach, independent functional modules are considered to manage the different aspects of the task (navigation, arm control,...) . To the contrary, the goal of this thesis is to show that learning tasks of different kinds can be tackled by learning sensorimotor attractors from a few task nonspecific structures. We thus proposed an architecture which can learn and encode attractors to perform navigation tasks as well as arm control.We started by considering a model inspired from place-cells for navigation of autonomous robots. On-line and interactive learning of place-action couples can let attraction basins emerge, allowing an autonomous robot to follow a trajectory. The robot behavior can be corrected and guided by interacting with it. The successive corrections and their sensorimotor coding enables to define the attraction basin of the trajectory. My first contribution was to adapt this principle of sensorimotor attractor building for the impedance control of a robot arm. While a proprioceptive posture is maintained, the arm movements can be corrected by modifying on-line the motor command expressed as muscular activations. The resulting motor attractors are simple associations between the proprioceptive information of the arm and these motor commands. I then showed that the robot could learn visuomotor attractors by combining the proprioceptive and visual information with the motor attractors. The visuomotor control corresponds to a homeostatic system trying to maintain an equilibrium between the two kinds of information. In the case of ambiguous visual information, the robot may perceive an external stimulus (e.g. a human hand) as its own hand. According to the principle of homeostasis, the robot will act to reduce the incoherence between this external information and its proprioceptive information. It then displays a behavior of immediately observed gestures imitation. This mechanism of homeostasis, completed by a memory of the observed sequences and action inhibition capability during the observation phase, enables a robot to perform deferred imitation and learn by observation. In the case of more complex tasks, we also showed that learning transitions can be the basis for learning sequences of gestures, like in the case of cognitive map learning in navigation. The use of motivational contexts then enables to choose between different learned sequences.We then addressed the issue of integrating in the same architecture behaviors involving visuomotor navigation and robotic arm control to grab objects. The difficulty is to be able to synchronize the different actions so the robot act coherently. Erroneous behaviors of the robot are detected by evaluating the actions predicted by the model with respect to corrections forced by the human teacher. These situations can be learned as multimodal contexts modulating the action selection process in order to adapt the behavior so the robot reproduces the desired task.Finally, we will present the perspectives of this work in terms of sensorimotor control, for both navigation and robotic arm control, and its link to human robot interface issues. We will also insist on the fact that different kinds of imitation behavior can result from the emergent properties of a sensorimotor control architecture.
8

Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif / Discovering and exploiting the task hierarchy to learn sequences of motor policies for a strategic and interactive robot

Duminy, Nicolas 18 December 2018 (has links)
Il y a actuellement des efforts pour faire opérer des robots dans des environnements complexes, non bornés, évoluant en permanence, au milieu ou même en coopération avec des humains. Leurs tâches peuvent être de types variés, hiérarchiques, et peuvent subir des changements radicaux ou même être créées après le déploiement du robot. Ainsi, ces robots doivent être capable d'apprendre en continu de nouvelles compétences, dans un espace non-borné, stochastique et à haute dimensionnalité. Ce type d'environnement ne peut pas être exploré en totalité, le robot va devoir organiser son exploration et décider ce qui est le plus important à apprendre ainsi que la méthode d'apprentissage. Ceci devient encore plus difficile lorsque le robot est face à des tâches à complexités variables, demandant soit une action simple ou une séquence d'actions pour être réalisées. Nous avons développé une infrastructure algorithmique d'apprentissage stratégique intrinsèquement motivé, appelée Socially Guided Intrinsic Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT), apprenant la relation entre ses actions et leurs conséquences sur l'environnement. Elle organise son apprentissage, en décidant activement sur quelle tâche se concentrer, et quelle stratégie employer entre autonomes et interactives. Afin d'apprendre des tâches hiérarchiques, une architecture algorithmique appelée procédures fut développée pour découvrir et exploiter la hiérarchie des tâches, afin de combiner des compétences en fonction des tâches. L'utilisation de séquences d'actions a permis à cette architecture d'apprentissage d'adapter la complexité de ses actions à celle de la tâche étudiée. / Efforts are made to make robots operate more and more in complex unbounded ever-changing environments, alongside or even in cooperation with humans. Their tasks can be of various kinds, can be hierarchically organized, and can also change dramatically or be created, after the robot deployment. Therefore, those robots must be able to continuously learn new skills, in an unbounded, stochastic and high-dimensional space. Such environment is impossible to be completely explored during the robot's lifetime, therefore it must be able to organize its exploration and decide what is more important to learn and how to learn it, using metrics such as intrinsic motivation guiding it towards the most interesting tasks and strategies. This becomes an even bigger challenge, when the robot is faced with tasks of various complexity, some requiring a simple action to be achieved, other needing a sequence of actions to be performed. We developed a strategic intrinsically motivated learning architecture, called Socially Guided Intrinsic Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT), able to learn the mapping between its actions and their outcomes on the environment. This architecture, is capable to organize its learning process, by deciding which outcome to focus on, and which strategy to use among autonomous and interactive ones. For learning hierarchical set of tasks, the architecture was provided with a framework, called procedure framework, to discover and exploit the task hierarchy and combine skills together in a task-oriented way. The use of sequences of actions enabled such a learner to adapt the complexity of its actions to that of the task at hand.
9

Un système interactif pour l'analyse des musiques électroacoustiques

Gulluni, Sébastien 20 December 2011 (has links) (PDF)
Les musiques électroacoustiques sont encore aujourd'hui relativement peu abordées dans les recherches qui visent à retrouver des informations à partir du contenu musical. La plupart des travaux de recherche concernant ces musiques sont centrés sur les outils de composition, la pédagogie et l'analyse musicale. Dans ce travail de thèse, nous nous intéressons aux problématiques scientifiques liées à l'analyse des musiques électroacoustiques. Après avoir replacé ces musiques dans leur contexte historique, une étude des pratiques d'analyse de trois professionnels nous permet d'obtenir des pistes pour l'élaboration d'un système d'analyse. Ainsi, nous proposons un système interactif d'aide à l'analyse des musiques électroacoustiques qui permet de retrouver les différentes instances des objets sonores composant une pièce polyphonique. Le système proposé permet dans un premier temps de réaliser une segmentation afin de dégager les instances initiales des objets sonores principaux. L'utilisateur peut ainsi sélectionner les objets qu'il vise avant de rentrer dans une boucle d'interaction qui utilise l'apprentissage actif et le retour de pertinence fourni par l'utilisateur. Le retour apporté par l'utilisateur est utilisé par le système qui réalise une classification multilabel des différents segments sonores en fonction des objets sonores visés. Une évaluation par simulation utilisateur est réalisée à partir d'un corpus de pièces synthétiques. L'évaluation montre que notre approche permet d'obtenir des résultats satisfaisants en un nombre raisonnable d'interactions.
10

Un robot curieux pour l'apprentissage actif par babillage d'objectifs : choisir de manière stratégique quoi, comment, quand et de qui apprendre

Nguyen, Sao Mai 27 November 2013 (has links) (PDF)
Les défis pour voir des robots opérant dans l'environnement de tous les jours des humains et sur unelongue durée soulignent l'importance de leur adaptation aux changements qui peuvent être imprévisiblesau moment de leur construction. Ils doivent être capable de savoir quelles parties échantillonner, et quelstypes de compétences il a intérêt à acquérir. Une manière de collecter des données est de décider par soi-même où explorer. Une autre manière est de se référer à un mentor. Nous appelons ces deux manièresde collecter des données des modes d'échantillonnage. Le premier mode d'échantillonnage correspondà des algorithmes développés dans la littérature pour automatiquement pousser l'agent vers des partiesintéressantes de l'environnement ou vers des types de compétences utiles. De tels algorithmes sont appelésdes algorithmes de curiosité artificielle ou motivation intrinsèque. Le deuxième mode correspond au guidagesocial ou l'imitation, où un partenaire humain indique où explorer et où ne pas explorer.Nous avons construit une architecture algorithmique intrinsèquement motivée pour apprendre commentproduire par ses actions des effets et conséquences variées. Il apprend de manière active et en ligne encollectant des données qu'il choisit en utilisant plusieurs modes d'échantillonnage. Au niveau du metaapprentissage, il apprend de manière active quelle stratégie d'échantillonnage est plus efficace pour améliorersa compétence et généraliser à partir de son expérience à un grand éventail d'effets. Par apprentissage parinteraction, il acquiert de multiples compétences de manière structurée, en découvrant par lui-même lesséquences développementale.

Page generated in 0.1543 seconds