• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 41
  • 18
  • 15
  • 13
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 197
  • 197
  • 78
  • 35
  • 35
  • 29
  • 26
  • 24
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Heterogeneous reaction and kinetics of acetic acid on components of mineral dust aerosol

Larish, Whitney Anne 01 July 2014 (has links)
No description available.
22

The Effect of Controlling Temperature and Relative Humidity on Tyrophagus Putrescentiae (Schrank) (Sarcoptiformes: Acaridae) Infestations on Dry Cured Hams Treated in Food Grade Ingredient Infused Nets

Hendrix, Jasmine Deneen 08 December 2017 (has links)
Since methyl bromide is an ozone depleting substance, there is a significant need to find effective alternative compounds to control mite infestations on dry cured hams. Therefore, the objective of this study was to determine the most effective relative humidity and/or temperature to minimize mite reproduction and mold growth on dry cured hams in untreated and food grade ingredient infused nets. Mites on ham slices in untreated nets were reduced from the initial inoculum level of 50 mites per ham slice when exposed to 85% RH at 24, 28, and 32°C. Results indicated that hams should be stored at 85% RH or greater to minimize mite reproduction when xanthan gum and propylene glycol infused nets are used. Nets infused with carrageenan, propylene glycol alginate, and propylene glycol, completely inhibited mite reproduction at 85% RH and were effective at controlling mold growth.
23

Optical Fiber Humidity Sensor Based on Evanescent Wave Scattering

Xu, Lina 07 August 2004 (has links)
An optical fiber humidity sensor has been devised using a porous sol-gel silica (PSGS) coating as a transducer. Evanescent wave scattering (EWS) in the PSGS coating. PSGS particles are highly hydrophilic and have a strong tendency to absorb water molecules from the surrounding environment. The absorbed water molecules form a thin layer on the inner surface of the pores inside the porous silica and enhance EWS, from which an indicatory signal can be obtained. The humidity sensor presented in this thesis has a fast response, is reversible, low cost, and has a broad dynamic relative humidity range from 3.6?0-6% to 100% or humidity range from 1.2ppm to 30000ppm. Because of its multiple advantages, including immunity to electromagnetic interference, resistance to corrosive environments, and high sensitivity, this humidity sensor has various applications. In soil moisture sensing, this humidity sensor can avoid the interference caused by compounds in soil water. For electrical transformer moisture sensing, this humidity sensor can avoid the effect of electromagnetic fields.
24

Airborne Transmission of Influenza a Virus in Indoor Environments

Yang, Wan 26 April 2012 (has links)
Despite formidable advances in virology and medicine in recent decades, we know remarkably little about the dynamics of the influenza virus in the environment during transmission between hosts. There is still controversy over the relative importance of various transmission routes, and the seasonality of influenza remains unexplained. This work focuses on developing new knowledge about influenza transmission via the airborne route and the virus' inter-host dynamics in droplets and aerosols. We measured airborne concentrations of influenza A viruses (IAVs) and size distributions of their carrier aerosols in a health center, a daycare center, and airplanes. Results indicate that the majority of viruses are associated with aerosols smaller than 2.5 µm and that concentrations are sufficient to induce infection. We further modeled the fate and transport of IAV-laden droplets expelled from a cough into a room, as a function of relative humidity (RH) and droplet size. The model shows that airborne concentrations of infectious IAV vary with RH through its influence on virus inactivation and droplet size, which shrinks due to evaporation. IAVs associated with large droplets are removed mostly by settling, while those associated with aerosols smaller than 5 µm are removed mainly by ventilation and inactivation. To investigate the relationship between RH and influenza transmission further, we measured the viability of IAV in droplets at varying RHs. Results suggest that there exist three regimes defined by RH: physiological conditions (~100% RH) with high viability, concentrated conditions (~50% to ~99% RH) with lower viability, and dry conditions (<~50% RH) with high viability. A droplet's extent of evaporation, which is determined by RH, affects solute concentrations in the droplet, and these appear to influence viability. This research considerably advances the current understanding of the dynamics of the influenza virus while it is airborne and provides an explanation for influenza's seasonality. Increased influenza activity in winter in temperate regions could be due to greater potential for IAV carrier aerosols to remain airborne and higher viability of IAV at low RH. In tropical regions, transmission could be enhanced due to better survival of IAV at extremely high RH. / Ph. D.
25

Viability of Viruses in Suspended Aerosols and Stationary Droplets as a Function of Relative Humidity and Media Composition

Lin, Kaisen 01 May 2020 (has links)
The transmission of some infectious diseases requires that pathogens can survive (i.e., remain infectious) in the environment, outside the host. The viability of pathogens that are immersed in aerosols and droplets is affected by factors such as relative humidity (RH) and the chemical composition of the liquid media, but the effects of these stressors on the viability of viruses have not been extensively studied. The overall objective of this work was to investigate the effects of RH and media composition on the viability of viruses in suspended aerosols and stationary droplets. We used a custom rotating drum to study the viability of airborne 2009 pandemic influenza A(H1N1) virus across a wide range of RHs. Viruses in culture medium supplemented with material from the apical surface of differentiated primary human airway epithelial cells remained equally infectious for 1 hour at all RH levels tested. We further investigated the viability of two model viruses, MS2 and Φ6, in suspended aerosols and stationary droplets consisting of culture media. Contrary to the results for influenza virus, we observed a U-shaped viability pattern against RH, where viruses retained their viability at low and extreme high RHs, but decayed significantly at intermediate to high RHs. By characterizing the droplet evaporation kinetics, we demonstrated that RH mediated the evaporation rate of droplets, induced changes in solute concentrations, and modulated the cumulative dose of solutes to which viruses were exposed as droplets evaporated. We proposed that the decay of viruses in droplets follows disinfection kinetics. Lastly, we manipulated the chemical composition of media to explore the stability of viruses as a function of pH and salt, protein, and surfactant concentrations. Results suggested that the effects of salt and surfactant were RH and strain-dependent. Acidic and basic media effectively inactivated enveloped virus. Protein had protective effect on both non-enveloped and enveloped viruses. Results from this work has advanced the understanding of virus viability in the environment and has significant implications for understanding infectious disease transmission. / Doctor of Philosophy / Pathogenic organisms, including bacteria, viruses, fungi, protozoa, and helminths, cause infections that are responsible for substantial morbidity and/or mortality. For example, it is estimated that influenza has caused 9 million to 45 million illnesses and 12,000 to 61,000 deaths annually since 2010 in the United States. The spread of certain diseases relies on people touching the pathogenic organism on surfaces or inhaling it from the air. Successful transmission requires that the pathogen survive, or maintain its infectivity, while it is in the environment. The survival of pathogens can be affected by temperature, humidity, composition of the respiratory fluid carrying them, and other factors. However, there is limited research investigating the effects of these factors on the survival of viruses in the environment. In this work, we studied the effect of relative humidity (RH) on the survival of viruses, including influenza virus and two other types of viruses, in inhalable aerosols and larger droplets. We found that influenza viruses survive well in aerosols across a wide range of RH levels for at least 1 h. Conversely, the two model viruses survived best at both low and very high RHs, such as found indoors in the wintertime or in tropical regions, respectively, but had a pronounced decay at intermediate RHs. By measuring how fast droplets evaporated, we found that RH affected their chemistry and determined the total amount of stress that viruses were exposed to. This explained why a "U-shaped" survival pattern was observed against RH. We also investigated the survival of viruses in droplets containing different components. Results indicated that the effects of salt, surfactant, protein, and droplet pH depended on RH and the type of virus. The outcomes of this work are meaningful in predicting the survival of viruses in aerosols and droplets of various compositions in the environment and could provide insight on developing strategies to minimize the spread of infectious diseases.
26

Humidity’s effect on strength and stiffness of containerboard materials : A study in how the relative humidity in the ambient air affects the tensile and compression properties in linerboard and fluting mediums

Strömberg, Frida January 2016 (has links)
The aim of this thesis was to investigate the difference between containerboard materials strength and stiffness properties in tension and compression, how the mechanisms behind compressive and tensile properties are affected by the relative humidity of the ambient air and how the relative humidity affects the compressive response of the fibre network. These properties are used to predict the lifetime performance of corrugated boxes and to prevent early collapses of the boxes and thereby waste or harm of the transported goods inside. The work also discusses the methods used to evaluate the different properties and how reliable the results are. The experimental part includes testing of linerboard and fluting materials from both virgin and recycled fibres, which have been conditioned at 50% and 90% relative humidity. The compression tests were filmed to evaluate if different compression failure modes can be related to the strength and stiffness of the material. The results indicated that the compressive strength and stiffness differ from the strength and stiffness values in tension at 90% relative humidity. Compressive strength is lower in both 50% and 90% relative humidity compared with the tensile strength. However, the compression stiffness shows a higher value than the tensile stiffness at 90% relative humidity. The study of the method for evaluating the compressive behaviour of the paper does not present a complete picture on what type of failure the paper actually experience.
27

Effect of fiber diameter and web porosity on breathability of nanofiber mats at various test conditions

Yuan, Wei, active 21st century 14 October 2014 (has links)
Barrier fabrics laminated with nanofiber membranes are used in protective textiles due to their ability to achieve high breathability or water vapor transmission rate (WVTR) while maintaining required barrier properties. The objective of this thesis is to investigate the factors impacting nanofiber membrane breathability. To achieve this objective, the effect of test conditions on breathability, and the relationship between fiber diameter, web porosity and breathability were explored. Nanofiber membranes were solution-spun by electrospinning from 15wt% and 20wt% PA6 solution concentrations, and by forcespinning from 20wt% and 25wt% concentrations. Three web area densities were made from each spinning method and solution combination: 5GSM, 10GSM and 15GSM. In order to investigate the impact of measurement conditions, breathability of all samples was measured by upright cup method (ASTM E96B) at two relative humidity levels (20% and 50%), and three air flow velocity levels (300fpm, 500fpm and 700fpm). The results showed that WVTR of all samples increased significantly when decreasing humidity or increasing air flow velocity. Webs with a lower density (5GSM or 10GSM) had higher changes of WVTR than those with a higher density (10GSM or 15GSM). These results indicate an interaction between the ambient conditions and the nanoweb structure, whereby conditions that are more conducive to water vapor transmission, such as 20%RH and 700fpm, are more discriminant between membranes. Both electropspun and forcespun membranes processed from the lower concentration solutions (15wt%, and 20wt%, respectively) exhibited smaller fiber diameters and smaller mean pore size. Overall, WVTR values varied with membrane thickness, and with solution concentration following a similar pattern as porosity. These effects were more accentuated for the forcespun samples, which had considerably larger pores (2811-5230nm) than the electrospun counterparts (163-298nm). Furthermore, samples forcespun by 20wt% solution were found to have clearly higher WVTR (1587-2194g/m²/24h at 700fpm) than electrospun samples (1526-1614g/m²/24h at 700fpm). This can be explained by the significant difference of pore size between electrospun and forcespun webs. It was concluded that breathability of forcespun samples, particularly those low density ones, could be effectively adjusted by solution concentration and is more sensitive to change of test conditions than that of electrospun webs. / text
28

Creep properties of cementitious materials : effect of water and microstructure : An approach by microindentation

Zhang, Qing 13 February 2014 (has links) (PDF)
Cementitious materials such as concrete, cement and gypsum are widely used in construction, as the raw materials of which they are made are abundant on Earth. Such trend is unlikely to change in the coming decades. But these materials suffer from creep. The creep of cementitious materials is a complex issue. On one hand, in cementitious materials creep is often coupled with other phenomena such as drying, hydration and cracking, and can be influenced by various parameters such as temperature, level of stress, water content and mix design. On the other hand, measuring creep by traditional macroscopic creep testing is time-consuming (creep test on concrete is recommended to be carried out over several months in order to provide a reliable characterization of long-term creep) and tedious, since experimental parameters need to be well controlled over extensive periods of time. This thesis studied microindentation at the scale of cement paste or gypsum plaster for the assessment of long-term basic creep properties of cementitious materials, by comparing creep functions obtained by minutes-long microindentation testing with those obtained with macroscopic creep experiments which lasted up to years. For cement paste, the comparison was made at the scale of concrete with the aid of upscaling tools. The study validated that minutes-long microindentation testing can provide a measurement of the long-term creep properties of cementitious materials. With the validated indentation technique, we studied the effect of microstructure (i.e., the distribution and the spatial organization of phases) and of water on long-term basic creep of cementitious materials. The effect of microstructure was studied on materials such as C3S pastes and C2S pastes as well as on compacts of synthetic C-S-H, portlandite (CH) and their mixtures prepared by compaction of powders. For all samples considered, we identified the right micromechanical model that allows predicting the results. The choice of micromechanical model was consistent with microstructural observations. The effect of relative humidity was studied by conditioning and testing some of those materials (i.e., C3S paste, compact of C-S-H, and compact of CH) in various relative humidities ranging from 11% to 94%. Relative humidity had a significant effect on creep: for all materials tested, a greater humidity led to a greater creep. The compact of portlandite was the most sensitive to relative humidity, probably because creep occurs at interfaces between portlandite crystals. For C3S paste, a linear relation was identified between long-term creep properties and water content at relative humidities ranging from 11% to 75%.Finally, we proposed micromechanical models that allow predicting long-term basic creep properties of cementitious materials with a wide range of volume fraction of crystalline phase and over a wide range of relative humidities
29

Investigation of the effect of relative humidity on additive manufactured polymers by depth sensing indentation

Altaf, Kazim January 2011 (has links)
Additive manufacturing methods have been developed from rapid prototyping techniques and are now being considered as alternatives to conventional techniques of manufacturing. Stereolithography is one of the main additive methods and is considered highly accurate and consistent. Polymers are used as stereolithography materials and exhibit features such as high strength-to-weight ratio, corrosion resistance, ease of manufacturing and good thermal and electrical resistance properties. However, they are sensitive to environmental factors such as temperature, moisture and UV light, with moisture being identified as one of the most important factors that affect their properties. Moisture generally has an adverse effect on the mechanical properties of polymers. Investigation of the effects of moisture on polymers can be carried out using a number of experimental techniques; however, the benefits of the depth sensing indentation method over bulk tests include its ability to characterise various mechanical properties in a single test from only a small volume of material and the investigation of spatial variation in mechanical properties near the surface. The aim of this research was to investigate the effects of varying relative humidity on the indentation behaviour of stereolithography polymers and to develop a modelling methodology that can predict this behaviour under various humidities. It was achieved by a combination of experimental and numerical methods. Depth sensing indentation experiments were carried out at 33.5 %, 53.8 %, 75.3 % and 84.5 % RH (relative humidity) and 22.5 °C temperature to investigate the effects of varying humidity on the micron scale properties of the stereolithography resin, Accura 60. In order to minimise the effects of creep on the calculated properties, appropriate loading and unloading rates with suitable dwell period were selected and indentation data was analysed using the Oliver and Pharr method (1992). A humidity control unit fitted to the machine was used to condition the samples and regulate humidity during testing. Samples were also preconditioned at 33.5 %, 53.8 %, 75.3 % and 84.5 % RH using saturated salt solutions and were tested at 33.5 % RH using humidity control unit. It was seen that properties such as indentation depth increased and contact iv hardness and contact modulus decreased with increasing RH. The samples conditioned and tested using the humidity control unit at high RH showed a greater effect of moisture than the preconditioned samples tested at 33.5 % RH. This was because the samples preconditioned at high RH exhibited surface desorption of moisture when tested at ambient RH, resulting in some recovery of the mechanical properties. In order to investigate these further, tests were performed periodically on saturated samples after drying. Ten days drying of samples conditioned for five days at 84.5 % RH provided significant, though not complete, recovery in the mechanical properties. These tests confirmed that Accura 60 is highly hygroscopic and its mechanical properties are a function of RH and removal of moisture leads to a significant recovery of the original mechanical properties.
30

HNO3-Induced Atmospheric Corrosion of Copper, Zinc and Carbon Steel

Samie, Farid January 2006 (has links)
The role of nitric acid (HNO3) on the atmospheric corrosion of metals has so far received little or no attention. However, the last decades of decreasing sulphur dioxide (SO2) levels and unchanged HNO3 levels in many industrialized countries have resulted in an increased interest in possible HNO3-induced atmospheric corrosion effects. In this study a new method was developed for studying the corrosion effects of HNO3 on metals at well-defined laboratory exposure conditions. The method has enabled studies to be performed on the influence of individual exposure parameters, namely HNO3-concentration, air velocity, temperature and relative humidity, as well as comparisons with newly generated field exposure data. The corrosion rate and deposition rate of HNO3 on copper was shown to follow a linear increase with HNO3 concentration. The deposition velocity (Vd) of HNO3 increased up to an air velocity of 11.8 cm s-1. Only at a higher air velocity (35.4 cm s-1) the Vd on copper was lower than the Vd on an ideal absorbent, implying the Vd of HNO3 at lower air velocities to be mass-transport limited. Within the investigated temperature range of 15 to 35 ºC only a minor decrease in the HNO3-induced copper corrosion rate could be observed. The effect of relative humidity (RH) was more evident. Already at 20 % RH a significant corrosion rate could be measured and at 65 % RH the Vd of HNO3 on copper, zinc and carbon steel reached maximum and nearly ideal absorption conditions. During identical exposure conditions in HNO3-containing atmosphere, the corrosion rate of carbon steel was nearly three times higher than that of copper and zinc. The HNO3-induced corrosion effect of copper, zinc and steel turned out to be significantly higher than that induced by SO2 alone or in combination with either NO2 or O3. This is mainly attributed to the much higher water solubility and reactivity of HNO3 compared to SO2, NO2 and O3. Relative to SO2, zinc exhibits the highest sensitivity to HNO3, followed by copper, and carbon steel with the lowest sensitivity. Extrapolation of laboratory data to an assumed average outdoor wind velocity of 3.6 m s-1 enabled a good comparison with field data. Despite the fact that ambient SO2 levels are still much higher than HNO3 levels, the results show that HNO3 plays a significant role for the atmospheric corrosion of copper and zinc, but not for carbon steel. The results generated within this doctoral study emphasize the importance of further research on the influence of HNO3 on degradation of other materials, e.g. stone and glass, as well as of other metals.

Page generated in 0.0665 seconds