• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 10
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observational Learning of a Bimanual Coordination Task: Understanding Movement Feature Extraction, Model Performance Level, and Perspective Angle

Dean, Noah J. 2009 December 1900 (has links)
One experiment was adminstered to address three issues central to identifying the processes that underlie our ability to learn through observation. One objective of the study was to identify the movement features (relative or absolute) extracted by an observer when demonstration acts as the training protocol. A second objective was to investigate how the performance level of the model (trial-to-trial variability in strategy selection) providing the demonstrations influences movement feature extraction. Lastly, a goal was to test whether or not visual perspective of the model by the observer (first-person or third-person) interacts with the aforementioned variables. The goal of the task was to trace two circles templates with a 90 degree relative phase offset between the two hands. Video recordings of two models practicing over three days were used to make three videos for the study; an expert performance, discovery performance, and instruction performance video. The discovery video portrayed a decrease in relative phase error and a transition from high trial-to-trial variability in the strategy selection to use of a single strategy. The instruction video also portrayed a decrease in relative phase error, but with no strategy search throughout practice. The expert video showed no strategy search with trial-to-trial variability within 5% of the goal relative phase of 90 across every trial. Observers watched one of the three video recordings from either a first-person or third-person perspective. In a retention test, the expert observers showed the most consistant capability (learning) in performing the goal phase. The instruction observers also showed learning, but to a lesser degree than the expert observers. The discovery group observers showed the least amount of learning of relative phase. The absolute feature of movement amplitude was not extracted by any observer group, results consistent with postulations by Scully and Newell (1985). Observation from the 1P perspective proved optimal in the expert and instruction observation groups, but the 3P perspective allowed for greater learning of of the goal relative phase (90 degree) in the discovery observation group. Hand lead, a relative feature of motion, was extracted by most obsevers, except those who observed the discovery model from the 3P perspective. It's concluded that the trial-to-trial variabiliy in terms of strategy selection interacted with the process of mental rotation, which prevented the extraction of hand lead in those observers that viewed the discovery model.
2

Observational Learning of a Bimanual Coordination Task: Understanding Movement Feature Extraction, Model Performance Level, and Perspective Angle

Dean, Noah J. 2009 December 1900 (has links)
One experiment was adminstered to address three issues central to identifying the processes that underlie our ability to learn through observation. One objective of the study was to identify the movement features (relative or absolute) extracted by an observer when demonstration acts as the training protocol. A second objective was to investigate how the performance level of the model (trial-to-trial variability in strategy selection) providing the demonstrations influences movement feature extraction. Lastly, a goal was to test whether or not visual perspective of the model by the observer (first-person or third-person) interacts with the aforementioned variables. The goal of the task was to trace two circles templates with a 90 degree relative phase offset between the two hands. Video recordings of two models practicing over three days were used to make three videos for the study; an expert performance, discovery performance, and instruction performance video. The discovery video portrayed a decrease in relative phase error and a transition from high trial-to-trial variability in the strategy selection to use of a single strategy. The instruction video also portrayed a decrease in relative phase error, but with no strategy search throughout practice. The expert video showed no strategy search with trial-to-trial variability within 5% of the goal relative phase of 90 across every trial. Observers watched one of the three video recordings from either a first-person or third-person perspective. In a retention test, the expert observers showed the most consistant capability (learning) in performing the goal phase. The instruction observers also showed learning, but to a lesser degree than the expert observers. The discovery group observers showed the least amount of learning of relative phase. The absolute feature of movement amplitude was not extracted by any observer group, results consistent with postulations by Scully and Newell (1985). Observation from the 1P perspective proved optimal in the expert and instruction observation groups, but the 3P perspective allowed for greater learning of of the goal relative phase (90 degree) in the discovery observation group. Hand lead, a relative feature of motion, was extracted by most obsevers, except those who observed the discovery model from the 3P perspective. It's concluded that the trial-to-trial variabiliy in terms of strategy selection interacted with the process of mental rotation, which prevented the extraction of hand lead in those observers that viewed the discovery model.
3

Perceptual and Attentional Constraints on 1:1 Bimanual Coordination

Kovacs, Attila J. 2010 May 1900 (has links)
Two experiments were conducted in an attempt to further the understanding of how previously identified intrinsic constraints and perceptual factors interact in influencing the learning and performance of various bimanual coordination patterns. The purpose of Experiment 1 was to determine the influence of Lissajous feedback on 1:1 bimanual coordination patterns (0°, 90°, 180° phase lags) when the movement amplitudes of the two limbs were different. Participants coordinated rhythmic movements of their forearms while being provided separate feedback for each limb (no- Lissajous group) or integrated feedback (Lissajous group). Data from Experiment 1 supports the notion that the lead-lag relationship as well as amplitude assimilation between limbs observed in the literature can be partially attributed to the visualperceptual factors present in the testing environment. When participants are provided integrated feedback in the form of Lissajous plots and templates much of the lead-lag and amplitude assimilation effects were eliminated and relative phase error and variability were also greatly reduced after only 3 min of practice under each condition. Results from recent experiments suggest that when the salient visual information (Lissajous feedback) is removed, performance in bimanual coordination tasks rapidly deteriorates. The purpose of Experiment 2 was to determine if reducing the frequency of feedback presentation will decrease the reliance on the feedback and will facilitate the development of an internal representation that will improve performance when visual feedback is removed. Participants receiving reduced frequency feedback presentation were able to perform a delayed retention test with the feedback removed as well as the test with feedback present. Data from Experiment 2 demonstrates that salient extrinsic Lissajous feedback can effectively be combined with reduced frequency feedback presentation in a way that performance levels, when tested without the availability of feedback, match those obtained when tested in the presence of Lissajous feedback. Taken together the present experiments add to the growing literature that supports the notion that salient perceptual information can override some aspects of the system's intrinsic dynamics typically linked to motor output control. The strong tendencies toward the intrinsic dynamics found in numerous previous bimanual movement studies and the difficulties in producing various coordination patterns may actually represent detrimental effects attributable to the perceptual information available in the environment and the attentional focus participants adopt. Given external integrated salient visual information participants can essentially tune-in and learn difficult bimanual coordination patterns with relatively little practice.
4

Continuous relative phase variability of hand-held load carriage techniques: The effectiveness of a mover's assistive device

Smallman, CATHERINE 02 October 2012 (has links)
Professional furniture movers must carry objects of all shapes, sizes and weights. When carrying boxes between a house and the moving van, professional movers will carry boxes two different ways. The first way is holding the box in their hands in front of their body, and the second way is holding the box behind them and leaning forward so the box can rest on their backs while walking. The Mover’s Assistive Device (MAD) is an aid developed to decrease the effort of movers when carrying boxes and has been shown to reduce the amount of needed grip strength. The goals of this research were to compare the effects of technique (carrying in front or behind the body) as well as the effects of using the MAD on the way movers coordinate their 1) legs and 2) trunk and hips. Movement was tracked using a camera system and reflective markers attached to the participants. In study 1 ten male participants completed the four different carrying conditions on a treadmill. The different segments of the leg did not change coordination patterns between the front and back carries, however, the coordination was more stable (similar across all steps) in the front carry. When participants used the MAD, their legs moved in a more coordinated motion than when they did not use the MAD, and is considered to be useful in maintaining balance and control while carrying a box. In study 2 thirteen male participants completed the four different carrying conditions on a treadmill. The trunk and the hips did not change coordination between the front and back carries, but they became more coordinated when participants were wearing the MAD. A more coordinated motion between the trunk and hips is suggested to be beneficial to low back health. / Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2012-10-01 21:43:33.045
5

Relative Phase Dynamics in Motor-Respiratory Coordination

January 2010 (has links)
abstract: Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system. / Dissertation/Thesis / Ph.D. Psychology 2010
6

Assessing Inter-joint Coordination during Walking

Chiu, Shiu-Ling, Chiu, Shiu-Ling January 2012 (has links)
Coordination indicates the ability to assemble and maintain a series of proper relations between joints or segments during motions. In Dynamical Systems Theory (DST), movement patterns are results of a synergistic organization of the neuromuscular system based on the constraints of anatomical structures, environmental factors, and movement tasks. Human gait requires the high level of neuromuscular control to regulate the initiation, intensity and adaptability of movements. To better understand how the neuromuscular system organizes and coordinates movements during walking, examination of single joint kinematics and kinetics alone may not be sufficient. Studying inter-joint coordination will provide insights into the essential timing and sequencing of neuromuscular control over biomechanical degrees of freedom, and the variability of inter-joint coordination would reflect the adaptability of such control. Previous studies assessing inter-joint coordination were mainly focused on neurological deficiencies, such as stroke or cerebral palsy. However, information on how inter-joint coordination is modulated with different constraints, such as walking speeds, aging, brain injury or joint dysfunctions, are limited. This knowledge could help us in identifying the potential risks during walking and improve the performance of individuals with movement impairments. The purpose of the present study was to investigate the properties of inter-joint coordination pattern and variability during walking with different levels of neuromuscular system perturbations using a DST approach, including an overall neuromuscular systemic degeneration, a direct insult to the brain, and a joint disease. We found that aging seemed to reduce the pattern adaptability of neuromuscular control. Isolated brain injury and joint disease altered the coordination pattern and exaggerated the variability, indicating a poor neuromuscular control. To improve gait performances for different populations, clinical rehabilitation should be carefully designed as different levels of neuromuscular system constraints would lead to different needs for facilitating appropriate coordinative movement. This dissertation includes both previously published/unpublished and coauthored material.
7

Estimation of Radial Runout

Nilsson, Martin January 2007 (has links)
<p>The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying. To help out with the vibration diagnosis when a truck enters a mechanical workshop, this work studies methods for radial runout detection using the wheel speed sensors.</p><p>The main idea is to represent the varying radius signal with a sinusoid, where the calculations are based on Fourier series. The estimated radial runout value is then the amplitude of the sinusoid. In addition to the detection part, the work also present results regarding how the relative phase difference between two wheels with radial runout effects the lateral motion of the cab.</p><p>This thesis work was performed at Scania CV AB in Södertälje, Sweden and all measurements have been full scale experiments on real trucks.</p>
8

Estimation of Radial Runout

Nilsson, Martin January 2007 (has links)
The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying. To help out with the vibration diagnosis when a truck enters a mechanical workshop, this work studies methods for radial runout detection using the wheel speed sensors. The main idea is to represent the varying radius signal with a sinusoid, where the calculations are based on Fourier series. The estimated radial runout value is then the amplitude of the sinusoid. In addition to the detection part, the work also present results regarding how the relative phase difference between two wheels with radial runout effects the lateral motion of the cab. This thesis work was performed at Scania CV AB in Södertälje, Sweden and all measurements have been full scale experiments on real trucks.
9

AGE-RELATED DIFFERENCES IN THE LUMBOPELVIC KINEMATICS DURING THE TRUNK MOTIONS IN THE ANATOMICAL PLANES

Vazirian, Milad 01 January 2017 (has links)
Management and control of the low back pain as an important health problem in the industrial societies necessitates to investigate how the risk of this disease is affected by aging. Since the abnormalities of the lumbopelvic kinematics are related to the existence or risk of low back injuries, the objective of this dissertation was set to find the age-related differences in lumbopelvic kinematics when performing basic trunk motions reaching to range of motion in different anatomical planes. A cross-sectional study was designed where sixty asymptomatic individuals between 20–70 years old with no confounding health condition, no current or previous highly physically demanding occupation and a body mass index between 22 and 30, were divided in five equally-sized and gender-balanced age groups, and attended two sessions of data collection to perform three repetitions of self-selected slow and fast trunk forward bending and backward return, as well as one left and right lateral bending and axial twist. Following an extensive literature review, the lumbar contribution (LC) to the trunk motion, the mean absolute relative phase (MARP) between the thoracic and pelvic motions as well as variation in MARP under repetitive motions, denoted by deviation phase (DP) were selected and used for the assessment of age-related differences in lumbopelvic kinematics during forward bending and backward return tasks. Lumbopelvic kinematics during the lateral bending and axial twist tasks were assessed using the lumbar and pelvic ranges of motion (ROMs) and coupled motion ratios (CMRs) as respectively the maximum flexion/rotation in the primary (i.e., intended) and the secondary (i.e., coupled) planes of trunk motion, where the latter was normalized to the conjugate ROM for better comparison. The results showed age-related differences between the age groups above and under 50 years of age generally. A smaller LC during the forward bending and backward return tasks were observed in the older versus younger age groups, suggesting that the synergy between the active and passive lower back tissues is different between the older and younger people, which may affect the lower back mechanics. Also, smaller MARP and DP suggesting a more in-phase and more stable lumbopelvic rhythm were observed in the older versus younger age groups, which may be a neuromuscular strategy to protect the lower back tissues from excessive strain, in order to reduce the risk of injury. Furthermore, the coupled motion of lumbar spine in the transverse plane during the lateral bending to the left, and the coupled motion of pelvis in the sagittal plane during the axial twist to the right were larger in older versus younger age groups. In summary, the lumbopelvic kinematics changes with aging, especially after the age of 50 which implies alterations in the active and passive tissue responses to the task demands, as well as the neuromuscular control patterns. Drawing a conclusion regarding ii the effect of aging on the risk of low back pain from these results requires a further detailed knowledge on age-related differences in spinal active and passive tissue properties.
10

Multi-Segmental Postural Coordination in Professional Ballet Dancers

Kiefer, Adam January 2009 (has links)
No description available.

Page generated in 0.0896 seconds