• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Convergence Analysis of Modulus Based Methods for Linear Complementarity Problems / Analiza konvergencije modulus metoda za probleme linearne komplementarnosti

Saeed Aboglida Saeed Abear 18 March 2019 (has links)
<p>The linear complementarity problems (LCP) arise from linear or quadratic programming, or from a variety of other particular application problems, like boundary problems, network equilibrium problems,contact problems, market equilibria problems, bimatrix games etc. Recently, many people have focused on the solver of LCP with a matrix having some kind of special property, for example, when this matrix is an H+-matrix, since this property is a sufficient condition for the existence and uniqueness of the soluition of LCP. Generally speaking, solving LCP can be approached from two essentially different perspectives. One of them includes the use of so-called direct methods, in the literature also known under the name pivoting methods. The other, and from our perspective - more interesting one, which we actually focus on in this thesis,<br />is the iterative approach. Among the vast collection of iterative solvers,our choice was one particular class of modulus based iterative methods.Since the subclass of modulus based-methods is again diverse in some sense, it can be specialized even further, by the introduction and the use of matrix splittings. The main goal of this thesis is to use the theory of H -matrices for proving convergence of the modulus-based multisplit-ting methods, and to use this new technique to analyze some important properties of iterative methods once the convergence has been guaranteed.</p> / <p>Problemi linearne komplementarnosti (LCP) se javljaju kod problema linearnog i kvadratnog programiranja i kod mnogih drugih problema iz prakse, kao &scaron;to su, na&nbsp; primer, problemi sa graničnim slojem, problemi mrežnih ekvilibrijuma, kontaktni problemi, problemi određivanja trži&scaron;ne ravnoteže, problemi bimatričnih igara i mnogi drugi. Ne tako davno, veliki broj autora se bavio razvijanjem postupaka za re&scaron;avanje LCP sa matricom koja ispunjava neko specijalno svojstvo, na primer, da pripada klasi H+-matrica, budući da je dobro poznato da je ovaj uslov dovoljan da obezbedi egzistenciju i jedinstvenost re&scaron;enja LCP. Uop&scaron;teno govoreći, re&scaron;avanju LCP moguce&nbsp; je pristupiti dvojako. Prvi pristup podrazumeva upotrebu takozvanih direktnih metoda, koje su u literaturi poznate i pod nazivom metode pivota. Drugoj kategoriji, koja je i sa stanovi&scaron;ta ove teze interesantna, pripadaju iterativni postupci. S obzirom da je ova kategorija izuzetno bogata, mi smo se opredelili za jednu od najznačajnijih varijanti, a&nbsp; to je modulski iterativni postupak. Međutim, ni ova odrednica nije dovoljno adekvatna, budući da modulski postupci obuhvataju nekolicinu različitih pravaca. Zato smo se odlučili da posmatramo postupke koji se zasnivaju na razlaganjima ali i vi&scaron;estrukim razlaganjima matrice. Glavni cilj ove doktorske disertacije jeste upotreba teorije H -matrica u teoremama o konvergenciji modulskih metoda zasnovanih na multisplitinzima matrice i kori&scaron;ćenje ove nove tehnike, sa ciljem analize bitnih osobina, nakon &scaron;to je konvergencija postupka zagarantovana.</p>
12

Numerical methods for pricing American put options under stochastic volatility / Dominique Joubert

Joubert, Dominique January 2013 (has links)
The Black-Scholes model and its assumptions has endured its fair share of criticism. One problematic issue is the model’s assumption that market volatility is constant. The past decade has seen numerous publications addressing this issue by adapting the Black-Scholes model to incorporate stochastic volatility. In this dissertation, American put options are priced under the Heston stochastic volatility model using the Crank- Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). Due to the early exercise facility, the pricing of American put options is a challenging task, even under constant volatility. Therefore the pricing problem under constant volatility is also included in this dissertation. It involves transforming the Black-Scholes partial differential equation into the heat equation and re-writing the pricing problem as a linear complementary problem. This linear complimentary problem is solved using the Crank-Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). The basic principles to develop the methods necessary to price American put options are covered and the necessary numerical methods are derived. Detailed algorithms for both the constant and the stochastic volatility models, of which no real evidence could be found in literature, are also included in this dissertation. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2013
13

Numerical methods for pricing American put options under stochastic volatility / Dominique Joubert

Joubert, Dominique January 2013 (has links)
The Black-Scholes model and its assumptions has endured its fair share of criticism. One problematic issue is the model’s assumption that market volatility is constant. The past decade has seen numerous publications addressing this issue by adapting the Black-Scholes model to incorporate stochastic volatility. In this dissertation, American put options are priced under the Heston stochastic volatility model using the Crank- Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). Due to the early exercise facility, the pricing of American put options is a challenging task, even under constant volatility. Therefore the pricing problem under constant volatility is also included in this dissertation. It involves transforming the Black-Scholes partial differential equation into the heat equation and re-writing the pricing problem as a linear complementary problem. This linear complimentary problem is solved using the Crank-Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). The basic principles to develop the methods necessary to price American put options are covered and the necessary numerical methods are derived. Detailed algorithms for both the constant and the stochastic volatility models, of which no real evidence could be found in literature, are also included in this dissertation. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2013
14

Ein Gebietszerlegungsverfahren für parabolische Probleme im Zusammenhang mit Finite-Volumen-Diskretisierung / A Domain Decomposition Method for Parabolic Problems in connexion with Finite Volume Methods

Held, Joachim 21 December 2006 (has links)
No description available.

Page generated in 0.0911 seconds