Spelling suggestions: "subject:"eliability bstetrics"" "subject:"eliability bimetrics""
1 |
Estimation de la disponibilité par simulation, pour des systèmes incluant des contraintes logistiques / Availability estimation by simulations for systems including logisticsRai, Ajit 09 July 2018 (has links)
L'analyse des FDM (Reliability, Availability and Maintainability en anglais) fait partie intégrante de l'estimation du coût du cycle de vie des systèmes ferroviaires. Ces systèmes sont hautement fiables et présentent une logistique complexe. Les simulations Monte Carlo dans leur forme standard sont inutiles dans l'estimation efficace des paramètres des FDM à cause de la problématique des événements rares. C'est ici que l'échantillonnage préférentiel joue son rôle. C'est une technique de réduction de la variance et d'accélération de simulations. Cependant, l'échantillonnage préférentiel inclut un changement de lois de probabilité (changement de mesure) du modèle mathématique. Le changement de mesure optimal est inconnu même si théoriquement il existe et fournit un estimateur avec une variance zéro. Dans cette thèse, l'objectif principal est d'estimer deux paramètres pour l'analyse des FDM: la fiabilité des réseaux statiques et l'indisponibilité asymptotique pour les systèmes dynamiques. Pour ce faire, la thèse propose des méthodes pour l'estimation et l'approximation du changement de mesure optimal et l'estimateur final. Les contributions se présentent en deux parties: la première partie étend la méthode de l'approximation du changement de mesure de l'estimateur à variance zéro pour l'échantillonnage préférentiel. La méthode estime la fiabilité des réseaux statiques et montre l'application à de réels systèmes ferroviaires. La seconde partie propose un algorithme en plusieurs étapes pour l'estimation de la distance de l'entropie croisée. Cela permet d'estimer l'indisponibilité asymptotique pour les systèmes markoviens hautement fiables avec des contraintes logistiques. Les résultats montrent une importante réduction de la variance et un gain par rapport aux simulations Monte Carlo. / RAM (Reliability, Availability and Maintainability) analysis forms an integral part in estimation of Life Cycle Costs (LCC) of passenger rail systems. These systems are highly reliable and include complex logistics. Standard Monte-Carlo simulations are rendered useless in efficient estimation of RAM metrics due to the issue of rare events. Systems failures of these complex passenger rail systems can include rare events and thus need efficient simulation techniques. Importance Sampling (IS) are an advanced class of variance reduction techniques that can overcome the limitations of standard simulations. IS techniques can provide acceleration of simulations, meaning, less variance in estimation of RAM metrics in same computational budget as a standard simulation. However, IS includes changing the probability laws (change of measure) that drive the mathematical models of the systems during simulations and the optimal IS change of measure is usually unknown, even though theroretically there exist a perfect one (zero-variance IS change of measure). In this thesis, we focus on the use of IS techniques and its application to estimate two RAM metrics : reliability (for static networks) and steady state availability (for dynamic systems). The thesis focuses on finding and/or approximating the optimal IS change of measure to efficiently estimate RAM metrics in rare events context. The contribution of the thesis is broadly divided into two main axis : first, we propose an adaptation of the approximate zero-variance IS method to estimate reliability of static networks and show the application on real passenger rail systems ; second, we propose a multi-level Cross-Entropy optimization scheme that can be used during pre-simulation to obtain CE optimized IS rates of Markovian Stochastic Petri Nets (SPNs) transitions and use them in main simulations to estimate steady state unavailability of highly reliably Markovian systems with complex logistics involved. Results from the methods show huge variance reduction and gain compared to MC simulations.
|
2 |
Leveraging Test Measurements into Proposing Additional Domain Tests.Turlapati, Radhika 01 May 2001 (has links) (PDF)
Accuracy and efficiency are extremely critical factors for large real-time control applications. A small oversight can cause catastrophic failure of a real-time system. Thus, these applications have to be tested meticulously to prevent any catastrophe that might occur. But, testing these applications exhaustively is not tractable, mainly due to the inherent complexity of the applications and also the huge amount of inputs and outputs that these applications involve. In order to save valuable amounts of time and resources, automated testing is imperative. Also, quantitative metrics have to be provided that assess the existing quality of the system and help increase the confidence in the user towards the software. However, to improve the overall quality of the software, additional focused testing needs to be done.
The work in this thesis involves providing specific test suggestions that help the user conduct thorough and precise domain tests based on the knowledge of the various parameters used in previous test runs. The information about the defective portions of the input domain is provided by dividing the input range into percentiles, which is referred to here as bucketing. The goal is to expose the exact inputs causing the defects and the range of inputs that have been lightly tested or left untested during previous tests. A Reliability Analysis Test Tool (RATT) was developed to implement these test suggestions.
|
3 |
Iterative detection for wireless communicationsShaheem, Asri January 2008 (has links)
[Truncated abstract] The transmission of digital information over a wireless communication channel gives rise to a number of issues which can detract from the system performance. Propagation effects such as multipath fading and intersymbol interference (ISI) can result in significant performance degradation. Recent developments in the field of iterative detection have led to a number of powerful strategies that can be effective in mitigating the detrimental effects of wireless channels. In this thesis, iterative detection is considered for use in two distinct areas of wireless communications. The first considers the iterative decoding of concatenated block codes over slow flat fading wireless channels, while the second considers the problem of detection for a coded communications system transmitting over highly-dispersive frequency-selective wireless channels. The iterative decoding of concatenated codes over slow flat fading channels with coherent signalling requires knowledge of the fading amplitudes, known as the channel state information (CSI). The CSI is combined with statistical knowledge of the channel to form channel reliability metrics for use in the iterative decoding algorithm. When the CSI is unknown to the receiver, the existing literature suggests the use of simple approximations to the channel reliability metric. However, these works generally consider low rate concatenated codes with strong error correcting capabilities. In some situations, the error correcting capability of the channel code must be traded for other requirements, such as higher spectral efficiency, lower end-to-end latency and lower hardware cost. ... In particular, when the error correcting capabilities of the concatenated code is weak, the conventional metrics are observed to fail, whereas the proposed metrics are shown to perform well regardless of the error correcting capabilities of the code. The effects of ISI caused by a frequency-selective wireless channel environment can also be mitigated using iterative detection. When the channel can be viewed as a finite impulse response (FIR) filter, the state-of-the-art iterative receiver is the maximum a posteriori probability (MAP) based turbo equaliser. However, the complexity of this receiver's MAP equaliser increases exponentially with the length of the FIR channel. Consequently, this scheme is restricted for use in systems where the channel length is relatively short. In this thesis, the use of a channel shortening prefilter in conjunction with the MAP-based turbo equaliser is considered in order to allow its use with arbitrarily long channels. The prefilter shortens the effective channel, thereby reducing the number of equaliser states. A consequence of channel shortening is that residual ISI appears at the input to the turbo equaliser and the noise becomes coloured. In order to account for the ensuing performance loss, two simple enhancements to the scheme are proposed. The first is a feedback path which is used to cancel residual ISI, based on decisions from past iterations. The second is the use of a carefully selected value for the variance of the noise assumed by the MAP-based turbo equaliser. Simulations are performed over a number of highly dispersive channels and it is shown that the proposed enhancements result in considerable performance improvements. Moreover, these performance benefits are achieved with very little additional complexity with respect to the unmodified channel shortened turbo equaliser.
|
Page generated in 0.082 seconds