• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanically flexible interconnects (MFIs) for large scale heterogeneous system integration

Zhang, Chaoqi 07 April 2015 (has links)
In this research, wafer-level flexible input/output interconnection technologies, Mechanically Flexible Interconnects (MFIs), have been developed. First, Au-NiW MFIs with 65 µm vertical elastic range of motion are designed and fabricated. The gold passivation layer is experimentally verified to not only lower the electrical resistance but also significantly extend the life-time of the MFIs. In addition, a photoresist spray-coating based fabrication process is developed to scale the in-line pitch of MFIs from 150 µm to 50 µm. By adding a contact-tip, Au-NiW MFI could realize a rematable assembly on a substrate with uniform pads and a robust assembly on a substrate with 45 µm surface variation. Last but not least, multi-pitch multi-height MFIs (MPMH MFIs) are formed using double-lithography and double-reflow processes, which can realize an MFI array containing MFIs with various heights and various pitches. Using these advanced MFIs, large scale heterogeneous systems which can provide high performance system-level interconnections are demonstrated. For example, the demonstrated 3D interposer stacking enabled by MPMH MFIs is promising to realize a low profile and cavity-free robust stacking system. Moreover, bridged multiinterposer system is developed to address the reticle and yield limitations of realizing a large scale system using current 2.5D integration technologies. The high-bandwidth interconnection available within interposer can be extended by using a silicon chip to bridge adjacent interposers. MFIs assisted thermal isolation is also developed to alleviate thermal coupling in a high-performance 3D stacking system.

Page generated in 0.0654 seconds