• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 23
  • 10
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 32
  • 30
  • 28
  • 18
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

In vitro effects of palmitoleic acid on osteoblast differentiation in MG-63 osteosarcoma cells and human adipose-derived stromal cells

Howard, Kayla January 2019 (has links)
Bone is an important organ influenced by mechanical load, hormones, nutrition and disease. During bone remodelling, osteoclasts resorb bone and osteoblasts form new bone. Osteoblasts are derived from mesenchymal stem cells (MSCs) such as adipose-derived stromal cells (ASCs). The mitogen-activated protein kinase (MAPK) pathway has been shown to interfere with osteoblast differentiation from an early stage. Runt related transcription factor 2 (RUNX2) exerts an effect downstream from p38 MAPK. RUNX2 phosphorylation by p38 MAPK may increase osteoblast differentiation markers such as alkaline phosphatase (ALP), osteoprotegerin (OPG) and receptor activator of nuclear factor kB ligand (RANKL). Palmitoleic acid (PLA), an omega-7 monounsaturated fatty acid (MUFA), promotes anti-osteoclastogenic effects, however, the effects of PLA on osteoblasts has not been reported. Osteoporosis is a condition which has debilitating effects in the elderly. Unsaturated fatty acids (UFA) have been studied for their beneficial effects on human health for a number of years. Polyunsaturated fatty acids (PUFA) have been studied as a potential therapeutic agent to prevent and assist in managing the condition. Few studies have been conducted on the effects of MUFA on bone therefore this study aimed to investigate the effects of PLA on osteoblast differentiation using ASCs and MG-63 osteosarcoma cells as an osteoblast model. ASCs and MG-63 osteosarcoma cell lines were exposed to PLA (20-100 μM) in osteogenic media (OM). The effects of PLA on cell viability was evaluated on undifferentiated cells. Thereafter, cells were exposed to PLA for 7, 14 or 21 days. Subsequently ALP activity, calcium mineralisation, gene expression, protein expression and adipogenesis were assessed. In this study, PLA had no significant effects on cell viability in undifferentiated cells. Furthermore, PLA had no significant effects on ALP activity, calcium mineralisation or phosphorylated extracellular signal-regulated kinase (pERK)/extracellular signal-regulated kinase (ERK) expression in differentiating cells, however, ALP activity increased at 7 day in ASCs and 21 days in MG-63 cells. Alizarin Red S staining increased at 21 days in both cell lines with a significant increase in the ASCs, however, calcium nodules were not visible. In the ASCs, PLA significantly increased the gene expression of ALP at 7 and 14 days compared to control (p<0.01 and p<0.05) while RANKL was significantly decreased at 7 days compared to the control (p<0.05). In the MG-63 cells, RUNX2 and OCN were significantly reduced at 7 days compared to control (p<0.05) and ALP, RUNX2, Osx and RANKL were significantly reduced at 14 days compared to control (p<0.001 and p<0.05). In the ASCs, lipid accumulation was not present after 21 days while in MG-63 cells, there was a significant increase in lipid accumulation at a high concentration of PLA after 21 days compared to control (p<0.05). This is the first study to explore the effects of PLA on osteoblast formation using ASCs and MG-63 osteosarcoma cells. Results suggest that PLA exerted changes in the ASCs and MG-63 cells during osteoblast differentiation, however, these changes were not significant. To conclude, PLA showed some significant effects on osteoblast-specific gene expression, however, most of the osteoblast-specific gene expression was downregulated, particularly in the MG-63 cells, after PLA treatment. / Dissertation (MSc)--University of Pretoria, 2020. / Physiology / MSc / Unrestricted
72

Investigating the impact of cigarette smoke on the immunopathogenesis of chronic respiratory disease / CIGARETTE SMOKE IMPACT ON RESPIRATORY DISEASE IMMUNOPATHOLOGY

Cass, Steven P January 2021 (has links)
Overall, the work presented in this thesis explored the impact of cigarette smoke on the immunopathogenesis of respiratory disease. This thesis highlighted the determinantal impact of cigarette smoke on (auto)antibody levels and pulmonary macrophage composition. Work completed by Steven P Cass 2016-2021. / Cigarette smoke is an insidious insult that is associated with a spectrum of respiratory diseases that range from cancer to obstructive diseases such as chronic obstructive pulmonary disease (COPD), to restrictive diseases such as idiopathic pulmonary fibrosis (IPF). In this thesis, we explore how cigarette smoke impacts immune components that contribute to respiratory disease. To begin, we assessed the impact of cigarette smoke on airway antibody and autoantibody levels. We assessed sputum, a non-invasive method to sample the lower airways, to directly assess the presence of antibodies and autoantibodies in COPD. Total immunoglobulin M (IgM), IgG and IgA were detectable in the sputum of subjects. Notably, in patients with mild to moderate COPD, current smoking status was associated with decreased IgM and IgG. Next, using a comprehensive autoantigen array, we measured matched sputum and serum autoantibodies in 224 individuals. Serum autoantibodies were more abundant than sputum autoantibodies and correlated strongly between two independent COPD cohorts. Overall, the autoantibody profile of a patient with COPD was the same as a control subject. A proportion of autoantibody specificities were differentially expressed in patients with COPD with anti-tissue autoantibodies weakly associated with measures of emphysema. Taken together, these data suggested chronic cigarette smoke exposure was associated with limited differential expression of autoantibodies, but these changes were not a reliable method to identify COPD status. In our third study, we assessed the impact of cigarette smoke exposure on the composition and function of pulmonary macrophage subpopulations. Macrophages perform a central role in respiratory host defence and are implicated in the pathobiology of several respiratory diseases. Using a mouse model of cigarette smoke exposure, we reported cigarette smoke-induced expansion of CD11b+ macrophage subpopulations including monocyte-derived alveolar macrophages and interstitial macrophages. The altered pulmonary macrophage composition following cigarette smoke exposure contributed to attenuated fibrogenesis in a model of bleomycin-induced lung injury. This study offered insight to pulmonary macrophage composition and function following cigarette smoke exposure. This thesis summarises the original contributions and work completed during the course of this Ph.D., aimed at understanding the impact of cigarette smoke exposure on immune components central to respiratory disease. In conclusion, these findings shed light on the presence of (auto)antibodies in patients with COPD and the composition of macrophage subpopulations following cigarette smoke exposure. / Thesis / Doctor of Philosophy (PhD) / Currently there are 1.3 billion people who use tobacco across the world. The most common method to consume tobacco is by smoking cigarettes. Cigarette smoking is well-known to cause disease; however, smoking rates are still increasing with more daily cigarette smokers in 2012 than there were in 1980. In this thesis, we explore the impact of cigarette smoke upon the immune system. We first assessed whether cigarette smoking impacts the levels of antibodies, proteins that are produced by the immune system to protect against foreign bodies, in healthy individuals, cigarette smokers without disease and patients with chronic obstructive pulmonary disease (COPD). We found that current smokers had decreased antibodies in the airways, thus predisposing cigarette smokers to increased damage. In our second study, we measured the presence of airway and blood autoantibodies. These are antibodies that target self and have the potential to inflict damage. We discovered that patients with COPD had minor changes in autoantibodies and these changes were weakly associated with emphysema. In our third study, we evaluated the impact of cigarette smoke on lung macrophages, cells that eat and destroy foreign bodies, in a mouse model of cigarette smoke exposure. Cigarette smoke increased the number of bone marrow-derived macrophages and this change in macrophage populations was associated with a reduced wound healing ability. Overall, these studies offer insight into how cigarette smoke impairs the function of the immune system and contributes to lung disease.
73

Mechanisms of epigenetic regulation in epidermal keratinocytes during skin development. Role of p63 transcription factor in the establishment of lineage-specific gene expression programs in keratinocytes via regulation of nuclear envelope-associated genes and Polycomb chromatin remodelling factors.

Rapisarda, Valentina January 2014 (has links)
During tissues development multipotent progenitor cells establish tissue-specific gene expression programmes, leading to differentiation into specialized cell types. It has been previously shown that the transcription factor p63, a master regulator of skin development, controls the expression of adhesion molecules and essential cytoskeleton components. It has also been shown that p63 plays an important role in establishing distinct three-dimensional conformations in the Epidermal Differentiation Complex (EDC) locus (Fessing et al., 2011). Here we show that in p63-null mice about 32% of keratinocytes showed altered nuclear morphology. Alterations in the nuclear shape were accompanied by decreased expression of nuclear lamins (Lamin A/C and Lamin B1), proteins of the LINC complex (Sun-1, nesprin-2/3) and Plectin. Plectin links components of the nuclear envelope (nesprin-3) with cytoskeleton and ChIP-qPCR assay with adult epidermal keratinocytes showed p63 binding to the consensus binding sequences on Plectin 1c, Sun-1 and Nesprin-3 promoters. As a possible consequence of the altered expression of nuclear lamins and nuclear envelope-associated proteins, changes in heterochromatin distribution as well as decrease of the expression of several polycomb proteins (Ezh2, Ring1B, Cbx4) has been observed in p63-null keratinocytes. Moreover, recent data in our lab have showed that p63 directly regulates Cbx4, a component of the polycomb PRC1 complex. Here we show that mice lacking Cbx4 displayed a skin phenotype, which partially resembles the one observed in p63-null mice with reduced epidermal thickness and keratinocyte proliferation. All together these data demonstrate that p63-regulated gene expression program in epidermal keratinocytes includes not only genes encoding adhesion molecules, cytoskeleton proteins (cytokeratins) and chromatin remodelling factors (Satb1, Brg1), but also polycomb proteins and components of the nuclear envelope, suggesting the existence of a functional link between cytoskeleton, nuclear architecture and three dimensional nuclear organization. Other proteins important for proper epidermal development and stratification, are cytokeratins. Here, we show that keratin genes play an essential role in spatial organization of other lineage-specific genes in keratinocytes during epidermal development. In fact, ablation of keratin type II locus from chromosome 15 in epidermal keratinocytes led to changes in the genomic organization with increased distance between the Loricrin gene located on chromosome 3 as well as between Satb1 gene located on chromosome 17 and keratin type II locus, resulting in a more peripheral localization of these genes in the nucleus. As a possible consequence of their peripheral localization, reduced expression of Loricrin and Satb1 has also been observed in keratins type II-deficient mice. These findings together with recent circularized chromosome conformation capture (4C) data, strongly suggest that keratin 5, Loricrin and Satb1 are part of the same interactome, which is required for the proper expression of these genes and proper epidermal development and epidermal barrier formation. Taken together these data suggest that higher order chromatin remodelling and spatial organization of genes in the nucleus are important for the establishment of lineage-specific differentiation programs in epidermal progenitor cells. These data provide an important background for further analyses of nuclear architecture in the alterations of epidermal differentiation, seen in pathological conditions, such as psoriasis and epithelial skin cancers.
74

Epigenetic mechanisms underlying the upregulation of melatonin receptor expression by valproic acid

Bahna, Sarra 11 1900 (has links)
Melatonin is an indoleamine hormone with neuromodulatory and neuroprotective properties. It mediates many of its effects by its two G protein-coupled receptors, MT1 and MT2. We have shown that valproic acid (VPA) induces melatonin receptor expression in cultured rat C6 glioma cells, and in the rat hippocampus. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and/or transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. In this study, we show that HDAC inhibitors of distinct chemical classifications, including suberanilohydroxamic acid (SAHA) and 4-(dimethylamino)-n-[7-(hydroxyamino)-7-oxoheptyl] benzamide (M344), parallel the effects of VPA on MT1 induction in vitro. However valpromide, a VPA analogue that lacks the ability to inhibit HDAC activity, does not. The observed increase in MT1 expression by VPA is matched by an increase in global histone H3 acetylation. More importantly, an enrichment of histone H3 acetylation occurs along the rat MT1 promoter following treatment with VPA, indicating that histone acetylation and chromatin remodelling are a primary mechanism underlying this induction. Independent of VPA, the rat MT1 gene may be regulated by a number of intracellular kinase pathways and transcription factors, which are also targeted by VPA. KG501-mediated CREB inhibition did not block MT1 upregulation by VPA. Blockade experiments targeting the PKC, PI3K/AKT, or GSK3β signaling pathways suggest that VPA induces melatonin receptor expression independent of these intracellular signaling cascades as well. The relevance of melatonin receptor upregulation was assessed using in vivo VPA and melatonin combination treatments on neuroprotective gene expression. The results of this study provide evidence that expression of the melatonin receptor is epigenetically induced by VPA by means of promoter histone acetylation. Melatonin receptor upregulation by VPA, or other HDAC inhibitors, may represent a therapeutic strategy for the management of several nervous system disorders. / Dissertation / Doctor of Philosophy (PhD)
75

The Role of Pericardial Cells an Drosophila melanogaster Extracellular Matrix Remodelling at the Dorsal Vessel

Acker, Meryl 15 June 2017 (has links)
The cardiovascular system of Drosophila melanogaster consists of a cardiac tube composed of myogenic cardiomyocytes and associating non-contractile pericardial cells, pumping hemolymph into the open circulatory system. The cardiac tube, known as the dorsal vessel, is embedded in a highly regulated extracellular matrix environment, required to maintain cellular integrity and cardiac function. After embryogenesis, the dorsal vessel undergoes extensive physiological changes, relying on the extracellular matrix to adapt and remodel accordingly. Three extracellular matrix proteins are investigated throughout this thesis: Type IV Collagen, Laminin and Pericardin. Due to their localization, morphology, and role in early development, the pericardial cells are candidate cells responsible for dorsal vessel extracellular matrix deposition and regulation throughout post-embryonic growth. Using immunofluorescence techniques in combination with confocal microscopy, I characterize the association between pericardial cells and extracellular matrix proteins, and quantify extracellular matrix protein deposition at the dorsal vessel throughout post-embryonic development. Gene knock-down experiments assess pericardial cell contribution to extracellular matrix synthesis and deposition at the dorsal vessel in third instar larva. Moreover, I quantify extracellular matrix protein deposition at the dorsal vessel in the absence of pericardial cells. These data suggests that pericardial cells regulate extracellular matrix protein deposition, localization and contribute to proper cardiac morphology in post-embryonic development. / Thesis / Master of Science (MSc)
76

The Role of Profilin1 Gene in the Development of Cardiovascular Diseases: Insights From Profilin1 Transgenic Mouse Model

Hessein Hassona, Mohamed Darwish January 2010 (has links)
No description available.
77

Caractérisation des voies de mort cellulaire lors du remodelage cardiaque dans les cardiopathies d'origine ischémique / Characterization of cell death pathway during myocardial ischemia reperfusion

Roberge, Stéphanie 09 December 2013 (has links)
L'ischémie se caractérise par l'obstruction d'une artère coronaire qui prive le tissu d'un apport en oxygène et nutriments. Bien que nécessaire, la reperfusion, c'est-à-dire la réouverture de l'artère, s'accompagne de lésions tissulaires, appelées lésions de reperfusion. Au cours de l'I/R, le TNF-α, cytokine pro-inflammatoire, augmente. Sa liaison sur son récepteur TNFR1 induit le recrutement des protéines FADD et procaspase-8 formant le complexe DISC qui permet l'activation de la caspase-8. La caspase-8 clive une protéine pro-apoptotique, Bid, qui induit une perméabilisation de la membrane mitochondriale entrainant une production excessive de radicaux libres et une libération de cytochrome c. Cette dernière associée à Apaf-1 et procaspase-9 sert de plateforme d'activation à la caspase-9, qui, une fois activée, clive et active la caspase-3. La caspase-2 est une caspase initiatrice, tout comme la caspase-8. Pourtant, son rôle dans l'I/R cardiaque est peu connu. La production de ROS via la voie TNF-α/caspase-8 provoque des dommages à l'ADN. Ceci entraine l'activation de PARP-1, une enzyme impliquée dans la réparation de l'ADN. En fonctionnant, PARP-1 produit de l'ADP-ribose qui peut se fixer sur le canal TRPM2 et ainsi l'activer. L'ouverture de ce canal cationique provoque une entrée de Ca2+ qui contribue à la mort cellulaire et aux lésions de reperfusion. L'objectif de ce travail est de déterminer les mécanismes de mort cellulaire faisant intervenir la caspase-8, la caspase-2 et TRPM2 et d'évaluer les effets d'une inhibition de ces protéines sur les lésions de reperfusion. Un modèle de rat I/R met en évidence une augmentation de TNF-α après seulement 1h de reperfusion suivie d'une activation de la caspase-8. Cette activation entraine une production de ROS qui altère la structure et la fonction du canal RyR2, favorisant la fuite de Ca2+ du reticulum sarcoplasmique vers le cytosol. La caspase-2, exprimée dans le ventricule gauche, est activée avant la caspase-8 et induit une voie apoptotique de type intrinsèque. L'inhibition de la caspase-8 ou de la caspase-2 diminue les lésions de reperfusion. Parallèlement, le TNF-α induit un courant de type TRPM2 via l'activation de la caspase-8 et la production de ROS. In vivo, l'inhibition de TRPM2 par le clotrimazole diminue les lésions de reperfusion chez un modèle de souris I/R. La caspase-8, la caspase-2 et TRPM2 contribuent aux lésions de reperfusion et apparaissent comme de bonnes cibles dans la cardioprotection. / Myocardial ischemia and reperfusion (I/R) lead to repefusion injury. TNF-α, a pro-inflammatory cytokine, increases during reperfusion and contributes to this injury. The binding TNF/TNFR1 leads to the recruitment of FADD, TRADD and procaspase-8 and form a complexe named DISC. This complexe activates caspase-8, which cleaves Bid, a pro-apoptotic member of Bcl-2 family. tBid disrupts the mitochondrial membrane and induces a ROS production and a release of cytochome c, localized in intermembrane space. In cytosol, a complexe named apoptosome is formed with cytochrome c, Apaf-1 and procaspase-9 to activate caspase-9, which cleaves and activates caspase-3. Like caspase-8, caspase-2 is an initiator caspase. But little data exists on the role of this caspase in myocardial I/R.The disruption of mitochondria induces a ROS production which causes DNA damage. The enzyme PARP-1, involved in DNA repair, is then activated. By operating, PARP-1 produces ADP-ribose which can bind on TRPM2, a non selective cationic channel of TRP family. The opening of TRPM2 causes an increase of cytosolic calcium promoting cell death and reperfusion injury. The goal of this study was to determine the mechanisms of cell death after I/R involving caspase-8, caspase-2 and TRPM2 and to test an inhibitor of each protein on reperfusion injury. With a model of rat I/R, we demonstrated that TNF-α increases after only 1h of reperfusion following by a caspase-8 activation and a ROS production. Oxidative stress causes a modification of RyR2 with a leak of calcium in cytosol. Caspase-2, also expressed in ventricles, is activated before caspase-8 and induces an intrinsic apoptotic pathway until caspase-3 activation. An inhibition of caspase-8 or caspase-2 decreases the reperfusion injury.In mouse cardiomyocytes, TNF-α induces a TRPM2-like current through caspase-8 activation and ROS production. TRPM2 inhibition by clotrimazole decreases cell death and reperfusion injury in vivo.In conclusion, caspase-2, caspase-8 and TRPM2 play an important role in cell death pathway ans should be good therapeutical tools.
78

Utilizing Virtual Simulation Technology to Increase Implementation of Safe Aging in Place Modifications

Denise M Wilder (7042886) 02 August 2019 (has links)
<p>Dedicated industry professionals from design, construction, and health care are working to provide attractive, constructible, functional and safe home modifications for aging in place. The commitment is to keep senior members of local communities in the homes they love, rather than to segregate them into big box retirement communities. This study explores the confidence level of both individuals interested in aging place for themselves and their friends and family members in aging in place modifications. In additions to those interested in aging in place for themselves and their friends and family members, invested professionals from design, construction and health care are surveyed to measure their confidence in common modifications. A 3d walkthrough is tested to investigate if confidence levels increase with the use of a walkthrough to communicate recommended modifications. <br></p><p> Friends and family members of those intending to age in place were significantly more concerned about the safety of their aging person, than the aging person themselves. Those friends and family members were also more impacted by viewing the video walkthrough than any of the other groups. </p>
79

Biomarqueurs de la fonction ventriculaire après un infarctus du myocarde : différences hommes-femmes / Biomarkers of left ventricular function after acute myocardial infarction : sex-biased differences

Lalem, Torkia 16 November 2018 (has links)
Les maladies cardiovasculaires sont la première cause de mortalité dans le monde. Les coronaropathies ischémiques dont l’infarctus du myocarde (IDM) sont responsables de la moitié de ces décès. Après un IDM, le cœur met en place un processus de cicatrisation afin de pallier la mort des cardiomyocytes et la perte de contractilité. S’il est dérégulé, ce processus peut conduire à un remodelage ventriculaire gauche (RVG) délétère qui altère la fonction ventriculaire (FV) et prédispose à l’insuffisance cardiaque. La découverte de nouveaux biomarqueurs capables de prédire le risque du RVG pourrait permettre d’améliorer la prise en charge des patients à risque et ainsi de réduire l’incidence de l’insuffisance cardiaque. De nombreuses différences ont été mises en évidence entre les hommes et les femmes avec IDM, et ce au niveau de la pathophysiologie, des symptômes, des biomarqueurs et même du processus du RVG. Ces différences impliquent le besoin de découvrir des biomarqueurs spécifiques à chaque sexe ou d’utiliser les biomarqueurs actuels différemment chez les femmes et les hommes. L’objectif de ce travail de thèse a été de mettre en évidence de nouveaux biomarqueurs de la FV après un IDM. Nous nous sommes particulièrement intéressés aux différences homme-femme dans les capacités prédictives de ces biomarqueurs. La première étude a eu pour objectif de valider l’association de cinq gènes avec la FV après un IDM établie lors d’études préliminaires. Une combinaison de trois gènes (LTBP4, TGFBR1 et TNXB) a été identifiée comme étant capable d’améliorer la prédiction de la dysfonction ventriculaire par les marqueurs actuels. Dans un second temps, nous avons montré dans une cohorte nationale d’IDM que le peptide natriurétique NT-proBNP n’était pas capable de prédire la FV chez les femmes alors que la troponine cardiaque était associée avec la dysfonction ventriculaire dans ce groupe. Dans une troisième étude, nous avons mis en évidence l’association entre le gène CDKN1C et la dysfonction ventriculaire spécifiquement chez les femmes. En conclusion, nos études contribuent à la découverte de nouveaux biomarqueurs du RVG post-IDM et attirent l’attention sur les différences hommes-femmes pour l’utilisation de ces biomarqueurs vers une médecine personnalisée / Cardiovascular disease is the first cause of mortality worldwide. Ischemic heart diseases among which myocardial infarction (MI), are responsible for half of these deaths. In order to cope with the loss of cardiomyocytes after MI and to attenuate the alteration of contractility, a repair process is implemented in the heart. If this repair process is dysregulated, it could lead to a maladaptive left ventricular remodeling (LVR) altering LV function and leading to heart failure. The discovery of novel biomarkers able to predict accurately the risk of LVR could lead to a better management of the patients at risk and reduce the incidence of heart failure. Many differences have been highlighted between men and women with MI, regarding the pathophysiology, the symptoms, levels of cardiac biomarkers and the process of LVR. These differences imply the discovery of novel sex-specific biomarkers for LVR prediction or the use of the known biomarkers in a sex-specific manner. The aim of this work was to discover novel biomarkers of left ventricular function (LVF) after an AMI, focusing on sex-differences. First, we aimed to validate the association between five genes previously found to be associated with LVF in small-scale studies. A panel of three genes (LTBP4, TGFBR1 and TNXB) was able to improve the ability of a clinical model to predict LVF. Second, we observed that the cardiac biomarker NT-proBNP was not predictor of LVF in women, whereas cardiac troponin was associated with LVF in this sex-group. A third study showed the association of the gene CDKN1C with LVF post-MI in a female-specific manner. In conclusion, our studies contribute to the discovery of novel biomarkers of LVF and draw the attention to sex differences in the clinical use of biomarkers towards the implementation of personalized medicine
80

Avaliação histomorfométrica, imunoistoquímica e microtomográfica da ação da terapia laser de baixa potência no processo de reabsorção radicular durante movimentação ortodôntica induzida em ratos / Histomorphometric, immunohistochemistry and microtomography evaluation of the effect of low level laser therapy in root reabsorption process during orthodontic movement induced in rats

Suzuki, Selly Sayuri 01 June 2016 (has links)
A movimentação dentária induzida é um processo biológico complexo mediado por estímulos mecânicos, levando a um subsequente processo de remodelação óssea, podendo haver reabsorção indesejada da raiz dentária provocada pelo excesso de força. Uma vez que a movimentação ortodôntica se baseia em um processo inflamatório localizado, o propósito deste estudo foi avaliar os efeitos do laser de baixa potência no processo de remodelação óssea e reabsorção radicular, buscando correlacionar as mudanças metabólicas observadas a nível celular ocorridas nos dias iniciais da movimentação dentária às alterações teciduais observadas microscopicamente e à arquitetura e morfologia do trabeculado e cortical ósseo. Primeiros molares de sessenta e oito ratos machos Wistar foram submetidos à movimentação induzida, divididos em 3 grupos: controle negativo (nenhuma movimentação), não irradiado (movimentação sem irradiação) e laser (movimentação e irradiação com laser de baixa potência de comprimento de onda de 810 nm, potência de 100 mW, área de 0,02cm2 e energia de 1,5 J/ponto) e eutanasiados nos dias 3, 6, 9, 14 e 21. Mensurações da movimentação dentária e análises histomorfométricas foram realizadas em todos os dias estudados. Análise imunoistoquímica dos marcadores RANKL, OPG e TRAP e avaliações por microscopia eletrônica de varredura (MEV) foram feitas nos dias 3, 6 e 9 e o ensaio Western Blotting para proteínas RANKL e SOFAT e imagens de microtomografia computadorizada (MicroCT) nos dias 14 e 21. Os resultados deste estudo mostraram que a movimentação dentária foi significantemente maior no grupo Laser (aumento em média de 40%) em todos os dias avaliados. O lado de compressão mostrou maior expressão de RANKL e osteoclastos TRAP-positivos nos dias 3, 6 e 9 (p<0,05), promovendo significativa redução na área de osso alveolar presente no lado de compressão nos dias 6, 9 e 14 (p<0,05), e alterações microestruturais, como menor fração de volume ósseo/volume total, menor densidade óssea mineral aos 14 dias. A irradiação com laser também aumentou a expressão de RANKL e a citocina SOFAT no dia 14. No lado de tensão, houve maior expressão de OPG especialmente aos 9 dias (p<0,001) e significativo aumento na área de osso alveolar presente nos dias 14 (p<0,01) e 21 (p<0,05) histomorfometricamente e maior densidade óssea mineral e espessura das trabéculas aos 21 dias (p<0,01). Com relação às áreas de hialinização presentes, os resultados mostraram áreas significantemente reduzidas nos dias 3, 6 e 9 nos grupos irradiados, o que explica o menor número de odontoclastos na superfície radicular nestes dias e a redução significante das áreas de reabsorção radicular observadas nas lâminas histológicas nos dias 9, 14 e 21 e nas imagens de MEV nos dias 3 e 9. Os grupos irradiados também mostraram menor volume das lacunas de reabsorção radicular medidas no MicroCT nos dias 14 e 21, especialmente nos lados de compressão. O estudo concluiu que o laser de baixa potência influenciou a remodelação óssea, aumentou a atividade dos osteoclastos no lado da compressão, e estimulou a formação óssea no de tensão, acelerando significativamente o movimento dentário e potencialmente reduzindo as áreas de necrose no ligamento periodontal e, consequentemente, a reabsorção radicular. / Tooth movement is a complex biological process induced by mechanical stimulation, leading to a subsequent process of bone remodeling, concomitantly unwanted root resorption may occur caused by excessive force. Since orthodontic movement is based on a localized inflammatory process, the purpose of this study was to evaluate the effects of low-level laser therapy on the process of bone remodeling and root resorption, searching to correlate metabolic changes observed at cellular level in the initial days of tooth movement to tissue changes observed microscopically and both architecture and morphology of trabecular and cortical bone. Upper first molars of sixtyeight male Wistar rats were submitted to induced movement, divided into 3 groups: negative control (no movement), non-irradiated (movement without irradiation) and Laser (movement and irradiation using low level laser of 810 nm wavelength, 100 mW power, 0.02cm2 area, energy of 1.5J/point) and euthanized on days 3, 6, 9, 14 and 21. Measurements of tooth movement and histomorphometric analysis were performed at all days. Immunohistochemistry analysis of RANKL, OPG and TRAP markers and scanning electron microscopy (SEM) were made on days 3, 6 and 9. Western Blotting method to evaluate RANKL and SOFAT proteins and MicroCT images were performed on days 14 and 21. The results of this study showed that tooth movement was significantly greater in the irradiated side (increased in average of 40%) in all evaluated days. The compression side showed higher expression of RANKL and TRAP-positive osteoclasts on days 3, 6 and 9 (p <0.05), promoting significant reduction in alveolar bone area in the compression side on days 6, 9 and 14 ( p <0.05), and leading to microstructural changes such as decrease of the fraction of bone volume / total volume (BV/TV) and the bone mineral density (BMD) at 14 days. The laser also increased RANKL expression and SOFAT on day 14. On the tension side there was an increased expression of OPG especially after 9 days (p <0.001), a significant increase in alveolar bone area on days 14 (p < 0.01) and 21 (p <0.05) histomorphometrically and increase in bone mineral density and trabecular thickness after 21 days (p <0.01). Regarding hyalinized areas, the results showed significant reduced areas on days 3, 6 and 9 in irradiated groups, which explains the lower number of clastic cells on the root surface in these days, and a significant reduction of areas of root resorption observed in histology on days 9, 14 and 21 and on days 3 and 9 by SEM images. Irradiated groups also showed less volume of root resorption lacunaes measured by MicroCT on days 14 and 21, especially in the compression side. The study concludes that the low-level laser therapy had an effect on bone remodeling, increasing osteoclast activity on the compression side, and stimulating bone formation in tension side, resulting in significant tooth movement acceleration and potentially reducing the areas of necrosis in the periodontal ligament and consequently the root resorption process.

Page generated in 0.0938 seconds