Spelling suggestions: "subject:"remote"" "subject:"demote""
71 |
"Follow the leader" formation control of multiple autonomous underwater vehicles using forward looking sonar / Formation control of multiple autonomous underwater vehicles using forward looking sonarGrabelle, Jason 06 1900 (has links)
With the Global War on Terrorism (GWOT) taking place in full force, autonomous vehicles have become a major asset to government forces. Expansion of single vehicle technology to multiple vehicle technology is required in order for the United States to stay ahead of its adversaries in the GWOT and other technological fields (such as oceanography). Multiple vehicle technology has been explored by many different institutions in the recent past (Leonard, 2001 and Kucik, 2003). Expansion of this technology will lead to greater autonomy and robustness amongst the vehicles. This thesis presents a simulation of a "follow the leader" behavior for multiple Autonomous Underwater Vehicles (AUVs). The follower vehicle incorporates the use of forward-looking sonar to track the leader vehicle. This process will free up bandwidth between acoustic modems; allowing data transfer to occur with greater efficiency. Hydrodynamic coefficients are used to develop steering equations that model REMUS through a track of specified waypoints similar to a real-world mission track. A two-dimensional forward looking sonar model with a 120 [degree] horizontal scan and a 110 meter radial range is modeled to track the leader vehicle. Resulting bearing and range between the two vehicles is incorporated as control for positioning the follower vehicle.
|
72 |
APPLICATION OF RADAR AND INFRARED IMAGERY TO A QUANTITATIVE GEOMORPHOLOGICAL INVESTIGATION OF THE MILL CREEK DRAINAGE BASIN, SOUTH-CENTRAL OKLAHOMACannon, Philip Jan, Cannon, Philip Jan January 1973 (has links)
No description available.
|
73 |
Spectral bands necessary to describe the directional reflective properties of beach sandsDoctor, Katarina Zsoldos 20 January 2017 (has links)
<p> A common method to identify or model the dominant directional reflective properties of a surface is the bidirectional reflectance distribution function (BRDF). BRDF describes the angular behavior by which light interacts with surfaces. Remote sensing technology has advanced to the stage where hyperspectral sensors, with hundreds of separate wavelength bands, are fairly common. This necessitates examining BRDF in the hyperspectral regime, which implies examining the directional reflective properties of hundreds of narrowly spaced wavelength bands. </p><p> In this dissertation I hypothesize that beach sand BRDF is wavelength dependent. Principal component analysis (PCA) and correlation matrix analysis of in situ measurements were used to test whether the spectral variability in the visible, near-infrared and shortwave directional reflectance factor of beach sands with and without freshwater surface films are wavelength dependent. The hyperspectral BRDF of beach sands exhibit weak spectral variability, the majority of which can be described with three to four broad spectral bands. These occur in the absence of a water layer on top of the sand in three wavelength ranges of 350-450 nm, 700-1350 nm, and 1450-2400 nm. When observing sheet flow on sand, a thin layer of water enhances reflectance in the specular direction at all wavelengths, and that spectral variability may be described using four spectral band regions of 350-450 nm, 500-950 nm, 950-1350 nm, and 1450-2400 nm. Spectral variations are more evident in sand surfaces of greater visual roughness than in smooth surfaces, regardless of sheetflow.</p>
|
74 |
Rocket and lidar studies of waves and turbulence in the arctic middle atmosphereTriplett, Colin Charles 19 August 2016 (has links)
<p> This dissertation presents new studies of waves and turbulence in the Arctic middle atmosphere. The study has a primary focus on wintertime conditions when the large-scale circulation of the middle atmosphere is disrupted by the breaking of planetary waves associated with sudden stratospheric warming (SSW) events. We used ongoing Rayleigh lidar measurements of density and temperature to conduct a multi-year study of gravity waves in the upper stratosphere-lower mesosphere (USLM) over Poker Flat Research Range (PFRR) at Chatanika, Alaska. We analyzed the night-to-night gravity wave activity in terms of the wind structure and the ageostrophy. We find that the weak winds during disturbed conditions block the vertical propagation of gravity waves into the mesosphere. The gravity wave activity is correlated with the altitudes where the winds are weakest. During periods of weak winds we find little correlation with ageostrophy. However, during periods of stronger winds we find the USLM gravity wave activity is correlated with the ageostrophy in the upper troposphere indicating that ageostrophy in this region is a source of the gravity waves. Inter-annually we find the wintertime gravity wave activity is correlated with the level of disturbance of the middle atmosphere, being reduced in those winters with a higher level of disturbance and weaker winds. We used rocket-borne ion gauges to measure turbulence in the wintertime middle atmosphere while documenting the larger meteorological context from Rayleigh lidar and satellites. This investigation of turbulence was called the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX). During MTeX we found a highly disturbed atmosphere associated with an SSW where winds were weak and gravity wave activity was low. We found low levels of turbulence in the upper mesosphere. The turbulence was primarily found in regions of convective instability in the topside of mesospheric inversion layers (MILs). The strongest and most persist turbulence was found in a MIL that is associated with the breaking of a monochromatic gravity wave. These MTeX observations indicate that turbulence is generated by gravity wave breaking as opposed to gravity wave saturation. These MTeX findings of low levels of turbulence are consistent with recent model studies of vertical transport during SSWs and support the view that eddy transport is not a dominant transport mechanism during SSWs.</p>
|
75 |
The Spectral Signature of Cloud Spatial Structure in Shortwave RadiationSong, Shi 02 November 2016 (has links)
<p> In this thesis, we aim to systematically understand the relationship between cloud spatial structure and its radiation imprints, i.e., three-dimensional (3D) cloud effects, with the ultimate goal of deriving accurate radiative energy budget estimates from space, aircraft, or ground-based observations under spatially inhomogeneous conditions. By studying the full spectral information in the measured and modeled shortwave radiation fields of heterogeneous cloud scenes sampled during aircraft field experiments, we find evidence that cloud spatial structure reveals itself through spectral signatures in the associated irradiance and radiance fields in the near-ultraviolet and visible spectral range.</p><p> The spectral signature of 3D cloud effects in irradiances is apparent as a domain- wide, consistent correlation between the magnitude and spectral dependence of net horizontal photon transport. The physical mechanism of this phenomenon is molecular scattering in conjunction with cloud heterogeneity. A simple parameterization with a single parameter ϵ is developed, which holds for individual pixels and the domain as a whole. We then investigate the impact of scene parameters on the discovered correlation and find that it is upheld for a wide range of scene conditions, although the value of ϵ varies from scene to scene.</p><p> The spectral signature of 3D cloud effects in radiances manifests itself as a distinct relationship between the magnitude and spectral dependence of reflectance, which cannot be reproduced in the one-dimensional (1D) radiative transfer framework. Using the spectral signature in radiances and irradiances, it is possible to infer information on net horizontal photon transport from spectral radiance perturbations on the basis of pixel populations in sub-domains of a cloud scene.</p><p> We show that two different biases need to be considered when attempting radiative closure between measured and modeled irradiance fields below inhomogeneous cloud fields: the remote sensing bias (affecting cloud radiances and thus retrieved properties of the inhomogeneous scene) and the irradiance bias (ignoring 3D effects in the calculation of irradiance fields from imagery-based cloud retrievals). The newly established relationships between spatial and spectral structure lay the foundation for first-order corrections for these 3D biases within a 1D framework, once the correlations are explored on a more statistical basis.</p>
|
76 |
VNC Service on Bluetooth Wireless NetworkXia, Rui 07 August 2003 (has links)
With characteristics such as small size, low weight and low power consumption, Bluetooth wireless technology provides efficient communication ability for pocket size devices, for which power consumption is critical. Built-in security features may serve as substitute for application level security. Bluetooth Service Discovery Protocol (SDP) provides information of availability and characteristics of services in the RF proximity. In this work, a VNC service is set up for Bluetooth wireless network and performance tests are made. A VNC server provides virtual consoles for VNC clients across different platforms. VNC has little computing power requirement on client side, fitting the profiles of most Bluetooth devices. Access can be limited to a particular window and its children windows; the function of the particular window can be advertised with SDP. The use of VNC is extended from a remote console only to a "platform" for services in general.
|
77 |
Genetic and environmental components of thermal tolerance in the least killifish, Heterandria formosaUnknown Date (has links)
Populations of the least killifish, Heterandria formosa are found in a wide variety of habitats, including habitats that differ widely in average temperature and in range of seasonal temperatures. To determine whether this ability to exist in thermally different sites is owing to phenotypic plasticity or to population differentiation I raised fish from a spring site and a pond site under common laboratory conditions. Fish were raised at one of two temperatures during gestation and at one of two temperatures from birth to sexual maturity. Gestation temperature, rearing temperature, population of origin, and gender had complex, interacting effects on critical thermal maximum and minimum at sexual maturity, on offspring survival, and on time to maturity. In particular, the populations were strongly differentiated for offspring survival and time to maturity, although the magnitude of the differences depended on the environment. Females performed better than males when genders differed. / H. formosa also exhibit superfetation, the presence of embryos in different developmental stages in the ovary at one time. There have been few comparative studies of interspecific variation in superfetation, and there have been no surveys of population variation in reproductive traits within a superfetating species. In this study I followed seasonal changes in reproductive parameters of four populations of H. formosa for all or part of 4 years. / The four populations differed in breeding phenology, level of superfetation, total volume of embryos carried, and brood size. This variation does not correspond to either general habitat similarities among the populations (ponds versus rivers), or to habitat stability. I also discovered that first, females must hold back some same-stage embryos while advancing others and second, that size of females, as measured by standard length, clearly influences the total number of embryos, brood size, and number of embryos carried in each stage. Yet despite this relationship between body size and embryo capacity, brood size is not constrained by space available for late-stage embryos. / Source: Dissertation Abstracts International, Volume: 51-02, Section: B, page: 0549. / Major Professor: Joseph Travis. / Thesis (Ph.D.)--The Florida State University, 1989.
|
78 |
Estimation of DBH Using Tree Variables Derived from Aerial LiDAR for Ford Forest, Baraga, MichiganDemiraslan, Tugay 16 February 2019 (has links)
<p> This study implemented LiDAR (Light Detection and Ranging) remote sensing technology and applied ITD (Individual Tree Detection) methods as an approach to estimate some essential tree variables, such as DBH (Diameter at Breast Height), height, volume, and biomass for Ford Forest Research Center in Upper Peninsula, Michigan. There were 34 deciduous (1 bigtooth aspen, 9 red oaks, 20 sugar maples, 2 white birches, and 2 yellow birches) and 17 coniferous (2 eastern hemlocks, 11 red pines, and 4 white pines) subject tree species. There were two different available LiDAR datasets from the same area that were collected in 2011 and 2017. Height measurements were done at 96% and 97% accuracy for hardwood and softwood tree species, respectively. </p><p> Several other tree variables derived from LiDAR point cloud were used to estimate DBH by using regression analysis for both 2017 and 2011 datasets. Estimation equations were tested on the other dataset. The best-fitted formula was 2017’s, with 0.55 adjusted R² and less than 0.0001 p-values on 2017 LiDAR data while 0.42 adjusted R² and less than 0.0001 p-values on 2011’s dataset. Some additional analysis that includes calculating PRMSE (Predicted Root Mean Square Error), BIAS (Mean Error), and MAD (Mean Absolute Difference) have been applied. The equation that was generated by using data from 2017 has –0.57 BIAS for Hardwood and 1.13 BIAS for softwood. That result indicates that the equation has –0.57 centimeters (cm) estimation error for hardwood and 1.13 cm for softwood on DBH estimations. </p><p>
|
79 |
Predicting soil moisture and wheat vegetative growth from ERTS-1 imageryKrupp, John Wayne January 2011 (has links)
Digitized by Kansas Correctional Industries
|
80 |
Remote Sensing of Plant Species Using Airborne Hyperspectral Visible-Shortwave Infrared and Thermal Infrared ImageryMeerdink, Susan Kay 07 March 2019 (has links)
<p> In California, natural vegetation is experiencing an increasing amount of stress due to prolonged droughts, wildfires, insect infestation, and disease. Remote sensing technologies provide a means for monitoring plant species presence and function temporally across landscapes. In this his dissertation, I used hyperspectral visible shortwave infrared (VSWIR), hyperspectral thermal (TIR), and hyperspectral VSWIR + broadband TIR imagery to derive key observations of plant species across a gradient of environmental conditions and time frames. In Chapter 2, I classified plant species using hyperspectral VSWIR imagery from 2013–2015 spring, summer, and fall. Plant species maps had the highest classification accuracy using spectra from a single date (mean kappa 0.80–0.86). The inclusion of spectra from other dates decreased accuracy (mean kappa 0.78–0.83). Leave-one-out analysis emphasized the need to have spectra from the image date in the classification training, otherwise classification accuracy dropped significantly (mean kappa 0.31–0.73). In Chapter 3, I used hyperspectral TIR imagery to determine the extent that high precision spectral emissivity and canopy temperature can be exploited for vegetation research at the canopy level. I found that plant species show distinct spectral separation at the leaf level, but separability among species is lost at the canopy level. However, species’ canopy temperatures exhibited different distributions among dates and species. Variability in canopy temperatures was largely explained by LiDAR derived canopy structural attributes (e.g. canopy density) and the surrounding environment (e.g. presence of pavement). In Chapter 4, I used combined hyperspectral VSWIR and broadband TIR imagery to monitor plant stress during California’s 2013–2015 severe drought. The temperature condition index (TCI) was calculated to measure plant stress by using plant species’ surface minus air temperature distributions across dates. Plant stress was not evenly distributed across the landscape or time with lower elevation open shrub/meadows, showing the largest amount of stress in June 2014, and August 2015 imagery. Plant stress spatial variability across the study area was related to a slope’s aspect with highly stressed plants located on south or south-southwest facing slopes. Overall, this dissertation quantifies the ability to temporally study plant species using hyperspectral VSWIR, hyperspectral TIR, and combined VSWIR+TIR imagery. This analysis supports a range of current and planned missions including Surface Biology and Geology (SBG), Environmental Mapping and Analysis Program (EnMAP), National Ecological Observatory Network (NEON), Hyperspectral Thermal Emission Spectrometer (HyTES), and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). </p><p>
|
Page generated in 0.0377 seconds