Spelling suggestions: "subject:"remote sensing atmospheric effects"" "subject:"remote sensing tmospheric effects""
1 |
The microwave opacity of ammonia and water vapor: application to remote sensing of the atmosphere of JupiterHanley, Thomas Ryan January 2008 (has links)
Thesis (Ph.D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Paul G. Steffes; Committee Member: Dr. Gregory D. Durgin; Committee Member: Dr. Robert D. Braun; Committee Member: Dr. Thomas K. Gaylord; Committee Member: Dr. Waymond R. Scott
|
2 |
The microwave opacity of ammonia and water vapor: application to remote sensing of the atmosphere of JupiterHanley, Thomas Ryan 23 June 2008 (has links)
The object of this research program has been to provide a baseline for microwave remote sensing of ammonia and water vapor in the atmosphere of Jupiter through laboratory measurements of their microwave absorption properties. Jupiter is not only the largest planet in our solar system, but one of the most interesting and complex. Despite a handful of spacecraft missions and many astronomical measurements, much of Jupiter s atmospheric dynamics and composition remain a mystery. Although constraints have been formed on the amount of certain gases present, the global abundances and distributions of water vapor (H2O) and ammonia (NH3) are relatively unknown. Measurements of H2O and NH3 in the Jovian atmosphere to hundreds of bars of pressure are best accomplished via passive microwave emission measurements. For these measurements to be accurately interpreted, however, the hydrogen and helium pressure-broadened microwave opacities of H2O and NH3 must be well characterized, a task that is very difficult if based solely on theory and limited laboratory measurements. Therefore, accurate laboratory measurements have been taken under a broad range of conditions that mimic those of the Jovian atmosphere. These measurements, performed using a newly redesigned high-accuracy system, and the corresponding models of microwave opacity that have been developed from them comprise the majority of this work. The models allow more accurate retrievals of H2O and NH3 abundances from previous as well as future missions to Jupiter and the outer planets, such as the NASA New Frontiers class Juno mission scheduled for launch in 2011. This information will enable a greater understanding of the concentration and distribution of H2O and NH3 in the Jovian atmosphere, which will reveal much about how Jupiter and our solar system formed and how similar planets could form in other solar systems, even planets that may be hospitable to life.
|
3 |
Identifying enhanced urban heat island convection areas for Indianapolis, Indiana using space-borne thermal remote sensing methodsBoyd, Kelly D. 02 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Heat is one of the most important factors in our atmosphere for precipitation (thunderstorm) formation. Thermal energy from local urban land-cover is also a common source of heat in the lower atmosphere. This phenomenon is known as the urban heat island effect (UHI) and is identified as a substantial cause to a changing climate in surface weather modification. The proceeding study investigates this connection between the UHI and surface weather using remote sensing platforms A ten-year analysis of the Indianapolis UHI and thunderstorms were studied from the summer months of May, June, July, August and September (MJJAS) from 2002 until 2011. LANDSAT space borne satellite technology and land-surface based weather radar technology was used in this analysis for thunderstorm investigation. Precipitation areas identified from land-based NEXRAD WSR-88D technology were used to identify convection from non-synoptic forcing and non-normal surface diurnal heating scenarios. Only convection appearing from the UHI were studied and analyzed. Results showed twenty-one events over eighteen days with the year 2005 and 2011 having the largest frequency of events. The month of August had the largest concentration with seven events during the late afternoon hours. UHI results showed July had the largest heat island magnitude with April and September having the lowest magnitude in UHI temperatures. Three events of the twenty-one storm paths did not had a significant mean temperature difference in the heat island below the storm reflectivity. The nineteen storm paths that were significant had a warmer area underneath storm path development by an average 6.2°C than surrounding areas. UHI initiation points showed twelve of the twenty-one events having statistically significant differences between 2 km initiation areas and the rest of the study areas. Land-cover results showed low intensity developed areas had the most land-cover type (48%) in the 2km initiation buffer regions.
|
Page generated in 0.426 seconds