• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 13
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Ultimate Improvement of Surface Roughness by Polishing Process; effects of work's wavelength

Tsai, Cheng-Min 02 July 2002 (has links)
The effects of work¡¦s surface wavelength on the ultimate surface roughness are considered in this study. Both the experimental and theoretical studies will be done in this study. In the experimental study, the relationships between ultimate surface roughness and various operating parameters will be examined. In the theoretical study, a mathematical model relating the machining rate and various machining parameters are proposed. In the mathematical model, qualitative and quantitative properties of machining rate under various surface geometric condition are obtained by the aid of computer simulation. For the experimental study, a series of experiments will be done to investigate the effects of various factors on the ultimate surface roughness of different work¡¦s surface wavelength.The factors may include the the tool speed, the tool¡¦s surface irregularity, and the particle density of slurry. The comouter simulation indicates that the removal rate is non-linear proportional to tool speed and normal load. Besides, results also showed that the difference of removal rate between peak and valley of surface profile always decreases as the work¡¦s surface wavelength increases. The experimental study confirmed that the relationship between ultimate roughness and wavelength does exist in the specific range of work¡¦s surface wavelength . The model appears to be consistent with currently available experimental data.
2

Milling in hardened steel - a study of tool wear in conventional- and dynamic milling

Ersvik, Erik, Khalid, Roj January 2015 (has links)
Milling is a commonly used machining process where a rotating cutter removes material from the workpiece. In recent years, attention has been turned towards so called dynamic milling methods which differ from the conventional way of milling. Dynamic milling normally uses, as opposed to the conventional way, more of the axial cutting edge, smaller radial depth of cut, significantly higher cutting speed and feed per tooth. The method has demonstrated potential to save both time and money under specific circumstances, for manufacturing companies.This thesis was conducted at ISCAR Sverige AB in Uppsala, Sweden. ISCAR Metalworking is a full service supplier of carbide cutting tools. The objective is to establish if there are benefits with dynamic milling methods with regard to material removal rate and lifetime of the tool by experimentally investigating and comparing tool wear that occur with conventional- and dynamic milling methods in hardened steels. Tools used were ISCAR’s MULTI-MASTER end mills, MM A and MM B, and the hardened steels were Hardox 600 and Dievar. Analysis was performed by using a USB-microscope, scanning electron microscope (SEM) and a Wyko-profilometer. The results of this study show that dynamic milling parameters can give several benefits regarding tool life and material removal rate. When machining in Hardox 600 and Dievar, both end mills were able to achieve a higher material removal rate and lifetime with dynamic parameters compared to more conventional ones. MM A outperformed MM B in Dievar, but the results were reversed in Hardox, MM B performed better. Results from the profilometry analysis showed that in Dievar, the dynamic parameters generated a smoother surface while the surface results from Hardox were more equivocal. The main conclusion was that milling with dynamic parameters is generally more advantageous and should be utilised, if possible.
3

A Study on the Mathematical Model of Optical Fiber End Profile Using Envelope Theory

Liao, Wei-chen 12 August 2008 (has links)
Using the envelope theory, the mathematical model of the end face profile and the working tool path of a special optical fiber polishing machine is deve- loped in this study. During the polishing process, the polisher is controlled by three parameters including the fiber rotational angle, the height H and the angle between the fiber and polisher. The contact points between the optical fiber and the polishing plate will determine the profile of the fiber end face. The 3-D end face with double-variable curvatures can be fabricated by properly controlling these three parameters. Since the grinding (polishing) material removal rate is related to machining time and normal contact force, the grinding (polishing) tool path and parameters are needed some modification in order to get the precise end profiles. Example of fiber end faces of 2-D elliptical face and 3-D ellipsoid are given to check the developed mathematical model in this study by computer solid modeling.
4

Competition for Conifer Cones as a Potential Mechanism of Endangerment for the Mount Graham Red Squirrel

Minor, Rebecca January 2010 (has links)
Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As species invasions continue to rise, it is important to understand how to mitigate this threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of food removal within the range of the critically endangered Mount Graham red squirrel (Tamiasciurus hudsonicus grahamensis). In the presence of Abert's squirrels, the time until 50% of cones were removed was 5.55 days faster than when Abert's squirrels were excluded (95% confidence interval 2.25 to 11.63 days). The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Eradication of established non-native populations is rare. Management targeted at specific mechanisms by which non-natives cause endangerment is an essential tool for conservation.
5

Optimization of Polishing Kinematics and Consumables during Chemical Mechanical Planarization Processes

Meled, Anand January 2011 (has links)
This dissertation presents a series of studies relating to optimization of kinematics and consumables during chemical mechanical planarization processes. These are also evaluated with the purpose of minimizing environmental and cost of ownership impacts.In order to study diamond micro-wear and substrate wear during planarization processes, a series of static etch tests and wear tests were performed using different types of diamond discs and subjected to various treatments. Scanning Electron Microscopy (SEM) and Inductively Coupled Plasma Membrane Spectroscopy (ICPMS) were used to estimate the extent of diamond micro-wear and substrate wear.Next, the impact of various factors (type of slurry abrasive, pH, abrasive content and abrasive concentration) on pad wear rate during planarization process was studied. Another study in this dissertation focuses on the development of a novel technique of using coefficient of friction (COF) data to distinguish between good and bad diamond discs. This study made use of the innovative tool diamond disc dragging device (DDD-100) designed and developed for the purpose of this study.It is known that the performance of chemical mechanical planarization depends significantly on the polishing pad grooving type and the kinematics involved in the process. Variations in pad grooving type as well as pressure and sliding velocity can affect polishing performance. One study in this dissertation investigates the effect of pressure and sliding velocity on the polishing performance. The study is conducted on multiple pressure and sliding velocity variations to understand the characteristic of each condition. A subsequent study focuses on the impact of pad grooving type on polishing performance.The greatest contribution of this dissertation involves development of the novel slurry injector to optimize the utilization of slurry during planarization processes. Slurry is a critical component in chemical mechanical planarization processes and accounts for approximately 50 percent of the cost of ownership (CoO). The novel injector apart from reducing the consumption of slurry, also contributed in addressing problems associated with foaming, reduced the number of defects and achieved better within wafer non-uniformity (WIWNU).
6

Contribution à la définition d'un processus de polissage robotisé. Application aux pièces aéronautiques en acier à haute résistance / Contribution to the definition of a robotic polishing process. Application to aeronautics parts in high strength steel

Guichard, Bastien 17 November 2015 (has links)
Dans le cas des pièces aéronautiques de grandes dimensions et de formes complexes nécessitant un bon état de surface, les opérations de polissage sont la plupart du temps réalisées manuellement par des opérateurs spécialisés. Ces opérations étant longues, pénibles et coûteuses, il paraît pertinent de s’intéresser à leur automatisation. Dans ces travaux de thèse, nous nous intéressons à la mise en place d’un processus de polissage robotisé pour un train d'atterrissage en acier à haute résistance. La définition du processus robotisé passe par la définition des outils adéquats (taille de grain, forme et souplesse), des conditions de polissage (effort, vitesse de coupe, vitesse d’avance, angle de dépinçage et recouvrement) et le réglage des paramètres de la commande en effort en fonction du matériau à polir et de la spécification de rugosité visée. Un modèle d’enlèvement de matière est ensuite proposé afin de maîtriser le défaut d’état de surface généré pour des outils « disques ». Une campagne expérimentale permet enfin de valider la mise en œuvre du robot et du processus de polissage sur une pièce spécifique, notamment en ce qui concerne la chaîne numérique. / In the case of aircraft large parts and complex shapes requiring a good finish state, polishing operations are mostly performed manually by specialized operators. These operations are long, painful and expensive, it seems relevant to be interested in their automation. In the thesis work, we focus on the development of a robotic polishing process for high strength steel landing gear. The definition of the robotic process involves the definition of appropriate tools (grain size, shape and flexibility), polishing conditions (force, cutting speed, feed rate, inclination angle and overlap) and adjustment of parameters the force control based on the material to be polished and the specification roughness. A material removal model is then proposed to control the surface state generated for discs tools. Finally, an experimental campaign validates the implementation of the robot and the polishing process on a specific part, in particular as regards the numerical chain.
7

Tribochemical investigation of microelectronic materials

Kulkarni, Milind Sudhakar 02 June 2009 (has links)
To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.
8

Performance and control of biofilm systems with partial nitritation and Anammox for supernatant treatment

Szatkowska, Beata January 2007 (has links)
Separate treatment of supernatant with dewatering of digested sludge with application of partial nitritation/Anammox process is assessed to be a cost-effective way to remove about 10-15% of influent nitrogen and, thereby, facilitate possibilities to reach required effluent requirements from the plant. The combined partial nitritation/Anammox process can be performed in two separate reactors or in one-stage. Both process options have been investigated in technical- and laboratory-scale pilot plants with moving-bed biofilm reactors (MBBR) filled with Kaldnes rings. Use of the two-stage process resulted in a very stable partial nitritation with a suitable nitrite to ammonium ratio (NAR) for the following Anammox step. Dissolved oxygen (DO) and pH value were identified as key factors for the partial nitritation process. The Anammox process could also be operated in a stable way. A high nitrite concentration, however, inhibited the process and the time for recovering the process at low nitrite concentration was about four months. Seeding of the partial nitritation reactor with Anammox bacteria (the recirculation of Anammox effluent to the nitritation reactor) turned out to be a simple and easy method to enable creation of an oxic-anoxic biofilm in one reactor. Studies have shown that such a one-stage system would be the best choice for full-scale implementation due to significantly higher nitrogen removal rates and easier operation. The partial nitritation process was found to be the rate-limiting reaction to perform the overall nitrogen removal. Measurements of conductivity and pH were suitable parameters for monitoring of the nitrogen reactions. A control and monitoring system was developed both for two-stage and one-stage technology. The system was mainly based on relationships between conductivity and inorganic nitrogen components, while in the one-stage technology measurements are used of both conductivity and pH and their relationships with inorganic nitrogen compounds. Alkalinity was an additional measured parameter suitable for process control and monitoring. Theoretically calculated values of conductivity were in good agreement with experimentally obtained results. / QC 20100819
9

A Study of the Grinding Process for the Optical-Fiber Endface with Double-Variable Curvatures

Chen, Jun-Hong 02 September 2010 (has links)
Mechanical grinding process is the most popular way to fabricate the fiber micro lenses, although there are some other methods, such as chemical etching, laser machining and focused ion beam micro-cutting. Mechanical grinding has its uniqueness in grinding Conical-Wedge-Shaped Fiber Endface, fiber endface with polygon-cone-shape, and fiber endface with double-variable curvatures. The double-variable curvatures fiber endface polisher, designed and manufactured by Mechanism Design Lab of NSYSU, is employed in this study. The normal force of the fiber endface is derived firstly and then the experimental parameters and data are substituted into the material removal rate (M.R.R.) formula to obtain M.R.R. and the Preston¡¦s constant K. The process parameters of the feed rate and polishing time on the fabrication of the fiber endface are analyzed. The polisher is calibrated and adjusted to improve the precision of the optical-fiber endface. A fiber endface with double-variable curvature is successfully fabricated in a single grinding process by properly controlling the fiber rotation angle, inclining angle, and the distant between the endface and the grinding film simultaneously. The grinding process developed in this study can be applied for fabricating optical fiber lenses in fiber optics communication as well as different types of micro probes, and micro spectroscopefors in other applications.
10

Tribochemical investigation of microelectronic materials

Kulkarni, Milind Sudhakar 02 June 2009 (has links)
To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.

Page generated in 0.0586 seconds