• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Vehicle-to-Vehicle Power Transfer Operation in V2G-Equipped Microgrid

Tamang, Amit Kumar January 2014 (has links)
Bidirectional vehicle-to-grid (V2G) system utilizes the batteries of parked electric-drive-vehicles to provide energy storage and backup services in a power system. Such services in a V2G-equipped microgrid system can be used as an enabler of enhancing the renewable energy source (RES) penetration by storing the energy during the surplus of RES supply and supplying the energy during the lack of RES supply. In this research, we aim at enhancing the storage capacity of V2G system by introducing a novel vehicle-to-vehicle power transfer operation that runs on the top of V2G services. The vehicle-to-vehicle (V2V) operation transfers the energy from the source vehicles (which are parked for relatively longer times) to the destination vehicles (which are parked for relatively shorter times). The depleted energy of the source vehicles is fulfilled by the surplus RES supply in the future. In this way, the destination vehicles are effectively charged by RES supply, thereby enhancing the storage capacity of the V2G system. We can also say that the V2V operation would become beneficial only when there is a sufficient amount of surplus RES supply in the future. We propose a decision rule to distinguish if a vehicle should be a source vehicle or a destination vehicle during the V2V operation. The decision rule is designed based on the two factors, namely the state-of-charge of vehicle’s battery, and the remaining time of vehicle to depart. In this research, we conduct a comprehensive study to analyze the impacts of state-of-charge and mobility pattern of vehicles on different performance metrics via simulation. The results shows that in order to achieve better performance of V2V operation, the state-of-charge of vehicle’s battery should be given more priority over the remaining time of vehicle to depart. The vehicle mobility pattern with unexpected departure greatly reduced the overall performance of the V2G system.
2

Nové trendy v energetice pro udržitelný rozvoj / Modern trends in energetics of sustainable development

Moric, Rostislav January 2012 (has links)
The aim of the thesis is to explain both the practical and theoretical aspects of the current trends in the development of sustainable communities. On the one hand, saving electricity and heat energy standards implementations - passive house, energy+, etc.; on the other hand, the possibilities of local communities supplying renewable electricity and heat in order to reach the highest share of renewable energy. In the practical part I will focus on the implementation of saving measures and the installation of renewable energy sources to a specific community. I will draw from the current architectural trends and the latest technologies for renewable energy sources.
3

Energy Management System Modeling of DC Data Center with Hybrid Energy Sources Using Neural Network

Althomali, Khalid 01 February 2017 (has links)
As data centers continue to grow rapidly, engineers will face the greater challenge in finding ways to minimize the cost of powering data centers while improving their reliability. The continuing growth of renewable energy sources such as photovoltaics (PV) system presents an opportunity to reduce the long-term energy cost of data centers and to enhance reliability when used with utility AC power and energy storage. However, the inter-temporal and the intermittency nature of solar energy makes it necessary for the proper coordination and management of these energy sources. This thesis proposes an energy management system in DC data center using a neural network to coordinate AC power, energy storage, and PV system that constitutes a reliable electrical power distribution to the data center. Software modeling of the DC data center was first developed for the proposed system followed by the construction of a lab-scale model to simulate the proposed system. Five scenarios were tested on the hardware model and the results demonstrate the effectiveness and accuracy of the neural network approach. Results further prove the feasibility in utilizing renewable energy source and energy storage in DC data centers. Analysis and performance of the proposed system will be discussed in this thesis, and future improvement for improved energy system reliability will also be presented.
4

Analýza investiční příležitosti v odvětví obnovitelných zdrojů / Analysis of renewable energy investment opportunities

Haňáková, Helena January 2010 (has links)
The thesis deals with the assessing of investment opportunity in the field of renewable natural resources. Fundamental analysis is carried out on First Solar which is a company producing solar modules. Thus, the work is focused on the area of photovoltaics. To determine the company's value, the method of discounted cash flow is used. The overall situation of the company is analyzed by the implementation of global, industry and company analysis.
5

Potential benefits of load flexibility: A focus on the future Belgian distribution system

Mattlet, Benoit 25 May 2018 (has links) (PDF)
Since the last United Nations Climate Change Conference in 2015 in Paris (the COP 21), world leaders acknowledged climate change. There is no need any more to justify the switch from fossil fuel-based to renewable energy sources. Nevertheless, this transition is far from being straightforward. Besides technologies that are not yet mature -- or at least not always financially viable in today's economy -- the power grid is currently not ready for a rapid and massive integration of renewable energy sources. A main challenge for the power grid is the inadequacy between electric production and consumption that will rise along with the integration of such sources. Indeed, due to their dependence on weather, renewable energy sources are intermittent and difficult to forecast with today's tools. As a commodity, electricity is a quite distinct good for which there must be perfect adequacy of production and consumption at all time and characterized by a very inelastic demand. High shares of renewable energy sources lead to high price volatility and a higher risk to jeopardize the security of supply. Additionally, the switch to renewable energy sources will lead to an electrification of loads and transportation, and thus the emergence of new higher-consumption loads such as electric vehicles and heat pumps. These new and higher-consumption loads, combined with the population growth, will cause over-rated power load increases with less predictable load patterns in the future.This work focuses on issues specific to the distribution power grid in the context of the current energy transition. Traditional low-voltage grids are perhaps the most passive circuits in power grids. Indeed, they are designed primarily using a fit and forget approach where power flows go from the distribution transformer to the consumers and no element has to be operated or regularly managed. In fact, low-voltage networks completely lack observability due to very low monitoring. The distribution grid will especially undergo drastic changes from this energy transition. Distributed sources and new high-consumption -- and uncoordinated -- loads result in new power flow patterns, as well as exacerbated evening peaks for which it is not designed. The consequences are power overloads and voltage imbalances that deteriorate grid components, such as a main asset like the medium-to-low voltage transformer. Additionally, the distribution grid is characterized by end-users that pay a price for electricity that does not reflect the grid situation -- that is, mostly constant over a year -- and allow little to no actions on their consumption.These issues have motivated authorities to propose a global approach to ensure security of electricity supply at short and medium-term. The latter requires, among others, the development of demand response programs that encourage users to take advantage of load flexibility. First, we propose adequate electricity pricing structures that will allow users to unlock the potential of such demand response programs; namely, dynamic pricings combined with a prosumer structure. Second, we propose a fast and robust two-level optimization, formulated as a mixed-integer linear program, that coordinates flexible loads. We focus on two types of loads; electric vehicles and heat pumps, in an environment with solar PV panels. The lower level aims at minimizing individual electricity bills while, at the second level, we optimize the power load curve, either to maximize self-consumption, or to smoothen the total power load of the transformer. We propose a parametric study on the trade-off between only minimizing the individual bills versus only optimizing power load curves, which have proven to be antagonist objectives. Additionally, we assess the impact of the rising share of flexible loads and renewable energy sources for scenarios from today until 2050. A macro-analysis of the results allows us to assess the benefits of load flexibility for every actor of the distribution grid, and depending on the choice of a pricing structure. Our optimization has proved to prevent evening peaks, which increases the lifetime of the distribution transformer by up to 200%, while individual earnings up to 25% can be made using adequate pricings. Consequently, the optimization significantly increases the power demand elasticity and increases the overall welfare by 10%, allowing the high shares of renewable energy sources that are foreseen. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
6

Akumulace elektrické energie z obnovitelných zdrojů / Accumulation of electricity from renewable sources

Plíšek, Petr January 2021 (has links)
This diploma thesis deals with the issue of accumulation of electricity produced by renewable sources. The first part focuses on the description of possible ways of accumulation, especially with focus on those methods, that are suitable for renewable energy sources. The next part deals with the design of the accumulation energy in the compressed air for the selected photovoltaic power plant. The necessity of designing a particular method of energy storage, is also its technical and economic analysis, which is the content of the last part of the thesis.
7

Elektrická vozidla jako akumulační prvek pro obnovitelné zdroje energie / Electric vehicles as energy storage element with renewable energy sources

Janečka, Jaromír January 2014 (has links)
This master thesis summarizes history of electric vehicles from its inception to present. Vehicles are divided into three groups according to the type of drive, special attention is paid to electric vehicles. Furthermore, typical ways of electric energy storage are presented, especially in the form of electrochemical cells, which are used in electric vehicles. The thesis also describes the situation of electromobility in the Czech Republic, namely government support, distribution companies tariffs, charging infrastructure and available electric vehicles. Finally, the concept of connecting electric vehicles to renewable energy source is described, with financial calculations for three profiled drivers.
8

Řízení a monitoring decentralizovaných zdrojů energie a akumulačních zařízení / Control and monitoring of a distributed energy generation systems based on renewable sources with storage system

Smugala, Ondrej January 2018 (has links)
The diploma thesis is dealing with possible approaches to control distributed energy resources and storage systems. One of these approaches is a virtual power plant and its concept is described in the first part of the thesis. The virtual power plant is a controlled system of distributed energy resources, storage systems and controllable loads interconnected via communication network, that can act as a conventional power plant. The theoretical part contains a survey of control system's topologies, a brief summary of available communication infrastructures and standards. The second part of the thesis is focused on the description of operation and control of hybrid system that represents an inseparable component of virtual power plant. A Matlab Simulink model was created for this purpose. A simulation of hybrid inverter's step response is realised to test the operation of the hybrid system and it is compared with the real measurements in the laboratory. A comparison of control approaches of hybrid system implemented on the basis of measurements is also included in this thesis and was published in the scientific paper attached in the appendix.
9

Posouzení vlivu jednotlivých druhů OZE na elektrizační soustavu / Assessment of the impact of different types of RES in the power system

Zmeškal, Pavel January 2011 (has links)
This thesis deals with usage of each kind of RES under conditions of Czech republic and their usage at areas placed in. Consequently supplied RES output power at time and its influence on reliability of supply in EPS CZ. Way of operation of RES from point of view of requirement on regulation and control of operation of EPS is more studied on operation of different kinds of wind power plants, which due to its variable output power affects not only EPS CZ. At final caption, economic influence of RES to EPS is reviewed as a unit, increasingly claims on regulation, increasingly benefit on support of RES. All these influences increase price of electricity for end user.
10

Vzduchový kolektor v tepelné bilanci budovy / Air-collector in heat balance of building

Dosedlová, Anna January 2013 (has links)
The subject of the thesis is the use of solar thermal technology for the production of low-potential heat. The theoretical part is focus in the solar technology, variants of passive use of solar energy. Describes in detail the solar facades, it's classification in terms of basic criteria. Applications on the project forced ventilation in administrative buildings, installation of solar facade. The work also includes an experiment that deals with the thermal behavior of the air collector.

Page generated in 0.0519 seconds