• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 101
  • 57
  • 38
  • 35
  • 29
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • Tagged with
  • 711
  • 711
  • 711
  • 212
  • 96
  • 95
  • 92
  • 92
  • 86
  • 84
  • 82
  • 78
  • 68
  • 67
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Quantification Of Thermoelectric Energy Scavenging Opportunity In Notebook Computers

Denker, Reha 01 September 2012 (has links) (PDF)
Thermoelectric (TE) module integration into a notebook computer is experimentally investigated in this thesis for its energy harvesting opportunities. A detailed Finite Element (FE) model was constructed first for thermal simulations. The model outputs were then correlated with the thermal validation results of the selected system. In parallel, a commercial TE micro-module was experimentally characterized to quantify maximum power generation opportunity from the combined system and component data set. Next, suitable &ldquo / warm spots&rdquo / were identified within the mobile computer to extract TE power with minimum or no notable impact to system performance, as measured by thermal changes in the system, in order to avoid unacceptable performance degradation. The prediction was validated by integrating a TE micro-module to the mobile system under test. Measured TE power generation power density in the carefully selected vicinity of the heat pipe was around 1.26 mW/cm3 with high CPU load. The generated power scales down with lower CPU activity and scales up in proportion to the utilized opportunistic space within the system. The technical feasibility of TE energy harvesting in mobile computers was hence experimentally shown for the first time in this thesis.
212

Solar Development in the Mojave Desert

Swartley, Joseph B 01 January 2010 (has links)
For more than two centuries, humans have been spewing “greenhouse gases” into the atmosphere through the burning of fossil fuels, deforestation, and the development of land, causing the planet’s surface temperature to increase at an accelerated rate. Climate change is one of the most pressing issues that the world is facing today, and in order to combat the effects of climate change, it is necessary to adopt the use of more renewable technology, namely solar energy. The United States' best region for solar development is the Mojave Desert, and many large-scale projects are being built or proposed to be built in the area. However, the deployment of solar technology in the Mojave Desert comes with significant ecological, socioeconomic, and political impacts. This paper is intended to provide an overview of the issues surrounding solar development in the Mojave Desert.
213

An Assessment of Biofuels and Synthetic Fuels as Substitutions of Conventional Diesel and Jet Fuels

Jansson, Rickard January 2008 (has links)
Today, a majority of the world’s energy need is supplied through sources that are finite and, at the current usage rates, will be consumed shortly. The high energy demand and pollution problems caused by the widespread use of fossil fuels make it increasingly necessary to develop renewable energy sources of limitless duration with smaller environmental impact than the traditional energy sources. Three fuels – rapeseed methyl ester (RME), Fischer-Tropsch (FT) diesel and FT jet fuel – derived from biomass, coal or gas were evaluated in this project. The fuel properties evaluated are in most cases listed in standards, often with recommendations, developed for biodiesel, petroleum diesel and jet fuel. Biodiesel is monoalkyl esters, e.g. RME, produced by transesterification of triglycerides in vegetable oil and an alcohol to esters and glycerin. This produce a fuel that is suitable as a direct substitution for petroleum diesel. Biodiesel may be used in pure form or in a blend with petrodiesel. Oxidative degradation and weak low temperature performance of biodiesel are properties of concern when substituting petrodiesel with biodiesel, as was shown in this project. The experiments show that oxidative stability can be improved with a synthetic antioxidant, e.g. butylated hydroxytoluene (BHT). The FT process converts syngas (a mixture of hydrogen and carbon monoxide) to a range of hydrocarbons. Syngas can be generated from a variety of carbon sources, e.g. coal, natural gas and biomass. The high-temperature (300-350 °C) FT process with iron-based catalysts is used for the production of gasoline and linear low molecular mass olefins (alkenes). The lowtemperature (200-240 °C) FT process with either iron or cobalt catalysts is used for the production of high molecular mass linear waxes. By applying various downstream processes, fuels suitable for substitution of petrodiesel and conventional jet fuel can be obtained. The FT fuels have lower densities than the conventional fuels. However, conclusions from this project are that most of the properties of FT fuels are better, or equal, than conventional petroleum fuels.
214

High Gain Transformerless DC-DC Converters for Renewable Energy Sources

Denniston, Nicholas Aaron 2010 May 1900 (has links)
Renewable energy sources including photovoltaic cells, fuel cells, and wind turbines require converters with high voltage gain in order to interface with power transmission and distribution networks. These conversions are conventionally made using bulky, complex, and costly transformers. Multiple modules of single-switch, single-inductor DC-DC converters can serve these high-gain applications while eliminating the transformer. This work generally classifies multiple modules of single-switch, single-inductor converters as high gain DC-DC converters transformers. The gain and efficiency of both series and cascade configurations are investigated analytically, and a method is introduced to determine the maximum achievable gain at a given efficiency. Simulations are used to verify the modeling approach and predict the performance at different power levels. Experimental prototypes for both low power and high power applications demonstrate the value of multiple module converters in high gain DC-DC converters for renewable energy applications.
215

Aerodynamic Design And Optimization Of Horizontal Axis Wind Turbines By Using Bem Theory And Genetic Algorithm

Ceyhan, Ozlem 01 September 2008 (has links) (PDF)
An aerodynamic design and optimization tool for wind turbines is developed by using both Blade Element Momentum (BEM) Theory and Genetic Algorithm. Turbine blades are optimized for the maximum power production for a given wind speed, a rotational speed, a number of blades and a blade radius. The optimization variables are taken as a fixed number of sectional airfoil profiles, chord lengths, and twist angles along the blade span. The airfoil profiles and their aerodynamic data are taken from an airfoil database for which experimental lift and drag coefficient data are available. The BEM analysis tool developed is first validated with the experimental data for low wind speeds. A 100 kW wind turbine, which is used in the validation, is then optimized. As a result of the optimization, the power production is improved by 40 to 80 percent. The optimization methodology is then employed to design a 1MW wind turbine with a 25m radius.
216

Numerical Modeling And Performance Analysis Of Solar-powered Ideal Adsorption Cooling Systems

Taylan, Onur 01 May 2010 (has links) (PDF)
Energy consumption is continuously increasing around the world and this situation yields research to find sustainable energy solutions. Demand for cooling is one of the reasons of increasing energy demand. This research is focused on one of the sustainable ways to decrease energy demand for cooling which is the solar-powered adsorption cooling system. In this study, general theoretical performance trends of a solar-powered adsorption cooling system are investigated using TRNSYS and MATLAB. Effects of different cycle enhancements, working pairs, operating and design conditions on the performance are analyzed through a series of steady and seasonal-transient simulations. Additionally, a normalized model is presented to investigate the effects of size of the system, need for backup power, collector area and mass of adsorbent. Results are presented in terms of values and ratios of cooling capacity weighted COP. For the conditions explored, the thermal wave cycle, wet cooling towers, high evaporation temperatures and evacuated tube collectors produced the highest COP values. Moreover, the heat capacity of the adsorbent bed and its shell should be low for the simple and heat recovery cycles and the adsorbent bed should be cooled down to the condensation temperature for all cases to achieve the highest possible COP. The selection of working pair should depend on the temperature of the available heat source (solar energy in this study) since each working pair has a distinct operating temperature range. Furthermore, there is always a need for backup power for the analyzed location and the system.
217

Simulations Of A Large Scale Solar Thermal Power Plant In Turkey Using Concentrating Parabolic Trough Collectors

Usta, Yasemin 01 December 2010 (has links) (PDF)
In this study, the theoretical performance of a concentrating solar thermal electric system (CSTES) using a field of parabolic trough collectors (PTC) is investigated. The commercial software TRNSYS and the Solar Thermal Electric Components (STEC) library are used to model the overall system design and for simulations. The model was constructed using data from the literature for an existing 30-MW solar electric generating system (SEGS VI) using PTC&rsquo / s in Kramer Junction, California. The CSTES consists of a PTC loop that drives a Rankine cycle with superheat and reheat, 2-stage high and 5-stage low pressure turbines, 5-feedwater heaters and a dearator. As a first approximation, the model did not include significant storage or back-up heating. The model&rsquo / s predictions were benchmarked against published data for the system in California for a summer day. Good agreement between the model&rsquo / s predictions and published data were found, with errors usually less than 10%. Annual simulations were run using weather data for both California and Antalya, Turkey. The monthly outputs for the system in California and Antalya are compared both in terms of absolute monthly outputs and in terms of ratios of minimum to maximum monthly outputs. The system in Antalya is found to produce30 % less energy annually than the system in California. The ratio of the minimum (December) to maximum (July) monthly energy produced in Antalya is 0.04.
218

Modeling And Performance Evaluation Of An Organic Rankine Cycle (orc) With R245fa As Working Fluid

Bamgbopa, Musbaudeen Oladiran 01 July 2012 (has links) (PDF)
This thesis presents numerical modelling and analysis of a solar Organic Rankine Cycle (ORC) for electricity generation. A regression based approach is used for the working fluid property calculations. Models of the unit&rsquo / s sub-components (pump, evaporator, expander and condenser) are also established. Steady and transient models are developed and analyzed because the unit is considered to work with stable (i.e. solar + boiler) or variable (i.e. solar only) heat input. The unit&rsquo / s heat exchangers (evaporator and condenser) have been identified as critical for the applicable method of analysis (steady or transient). The considered heat resource into the ORC is in the form of solar heated water, which varies between 80-95 0C at a range of mass flow rates between 2-12 kg/s. Simulation results of steady state operation using the developed model shows a maximum power output of around 40 kW. In the defined operation range / refrigerant mass flow rate, hot water mass flow rate and hot water temperature in the system are identified as critical parameters to optimize the power production and the cycle efficiency. The potential benefit of controlling these critical parameters is demonstrated for reliable ORC operation and optimum power production. It is also seen that simulation of the unit&rsquo / s dynamics using the transient model is imperative when variable heat input is involved, due to the fact that maximum energy recovery is the aim with any given level of heat input.
219

A Study On The Catalytic Pyrolysis And Combustion Characteristics Of Turkish Lignite And Co-processing Effects With Biomass Under Various Ambient Conditions

Ehsan, Abbasi Atibeh 01 August 2012 (has links) (PDF)
In this study the catalytic pyrolysis and combustion characteristics of Turkish coal samples in O2/N2 and O2/CO2 (oxy-fuel conditions) ambient conditions were explored and the evolution of emissions during these tests was investigated using non-isothermal Thermo-gravimetric Analysis (TGA) technique combined with Fourier Transform Infrared (FTIR) spectroscopy. Potassium carbonate (K2CO3), calcium hydroxide (Ca(OH)2), iron (III) oxide (Fe2O3) and iron (III) chloride (FeCl3) were employed as precursors of catalysts to investigate the effects of potassium (K), calcium (Ca) and iron (Fe). Furthermore the effects of these catalysts on calorimetric tests of Turkish coal samples were investigated. TGA-FTIR pyrolysis tests were carried out in 100 % N2 and 100 % CO2 ambient conditions which are the main diluting gases in air and oxy-fuel conditions. Lignite pyrolysis tests revealed that the major difference between pyrolysis in these two ambient conditions was observed beyond 720
220

Facilitated characterization of a catalytic partial oxidation fuel reformer using in situ measurements

Hughes, Dimitri 17 November 2009 (has links)
Hydrocarbon conversion and synthesis gas production are two components of the power production process that require significant development and exploration in the advanced energy arena. To remain within our current fueling infrastructure, it is imperative that an efficient and reliable mechanism to facilitate these components of the power production process is developed for automotive applications. A honeycomb monolith rhodium based catalyst has been identified as a potential fuel reformer element for use in automotive hydrocarbon fuel conversion. Using the novel and minimally invasive SpaciMS (Spatially resolved capillary inlet Mass Spectroscopy), developed at Oak Ridge National Laboratories, and an internal temperature acquisition system, the impact of fuel inlet space velocity on the operating rhodium based catalytic fuel reformer of interest was parametrically studied. In situ temperature and species profiles of the catalyst during steady state operation were produced. The data acquired through these experiments was then used to demonstrate analytic capability by conducting thermodynamic analyses on the operating fuel reformer. Experimental and analytical results can be used in development of design considerations for fuel conversion systems.

Page generated in 0.0681 seconds