• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Livslängdsanalys av reparationsmetoder för kantbalkarna på Ölandsbron

Svensson, Ted January 2010 (has links)
Ölandsbron är en pelarbro som förbinder Öland med fastlandet. Denna bro är av undermålig kvalitet tack vare dåliga förutsättningar vid byggnationen och i och med detta är underhållsbehovet mycket stort. Kantbalkarna är en av de hårdast utsatta delarna på en bor och ersätts nästan alltid under en bros livstid och samma sak gäller på Ölandsbron. Dock så ville vägverket se vilka alternativ som fanns tillgängliga vid reparation och upptäckte därmed möjligheten att installera katodiskt skydd som en reparationsåtgärd. Katodiskt skydd innebär att man med ström skyddar armeringen genom att göra densamme negativt laddad med hjälp av en positiv laddad anod. Anoden kan fungera på olika sätt men i fallet med Ölandsbron så blir anoden positivt laddad med hjälp av en extern strömkälla. Denna reparationsmetod är förhållandevis ovanlig i Sverige vilket innebär att kunskapen om den är relativt begränsad. En av faktorerna som behöver uppdagas är livslängden på de olika komponenterna i systemet. Katodiskt skydd är inte underhållsfritt och skyddssystemet behöver nya komponenter med jämna mellanrum. För att kunna byta ut de olika komponenterna i rätt tid behöver man veta deras livslängd då ett utbyte inte sker för sent eller för tidigt sparar in stora kostnader. Livslängdsanalys av komponenter i katodiskt skydd är därför vad examensarbetet handlat om och själva analysen har skett med en metod som kallas för faktormetoden. Faktormetoden bestämmer inte livslängder utan justerar befintliga livslängder med hänsyn till det specifika objektet med hjälp av referenslivslängder. Dock visade det sig vara svårt att få tag i referenslivslängder vilket medförde att resultatet i arbetet kan skilja sig något från verkligheten. För att bättre livslängdsanalyser ska kunna utföras krävs det att beställare av byggnadstekniska komponenter börjar kräva referenslivslängder av tillverkare. En väldefinierad livslängd är någonting som beställaren tjänar på i underhållskostnader samtidigt som det kan stärka tillverkarnas varumärke. Underhållsmässigt visade det sig att de ingjutna komponenterna var underhållsfria i hänsyn till brons livslängd. De komponenter som visade sig ha kortast livslängd var de elektriska komponenterna samt referenselektroderna i systemet och utbytesintervallet skiljer sig mellan 5 och 20 år. Dock är de elektroniska komponenterna enkla att byta ut och kräver inga kostsamma insatser. Kablarna som finns i systemet är de näst med underhållskrävande komponenterna och kräver ett utbytesintervall på 25 år. Själva utbytet av kablarna är även det en mer arbetskrävande insats. Då det katodiska skyddet beräknas behöva en livslängd på ca. 60 år är just kablarnas livslängd ett problem då man helst skulle sett att utbyte av dessa endast skulle behöva skett en gång under brons livslängd.
2

Miljö - och kostnadsanalys av UHPC som reparationsmaterial för bropelare / Sustainability of UHPC as a repair material for bridge piers

Huq, Saraj, Milosevic, Ivan January 2020 (has links)
Byggindustrin har i dagsläget en negativ klimatpåverkan och infrastrukturen likaså. Många länder har därför försökt undersöka möjligheten att hitta ett långsiktigt och hållbart alternativ till det konventionella reparationsmaterialet. Olika material undersöks, olika optimerade betongrecept testas för att förstå hur miljöpåverkan har minimeras för att förlänga livslängden hos betongkonstruktioner. Vid reparation av en bro är det viktigt att ta hänsyn till både kostnader och miljöpåverkan under hela dess livscykel. Kostnader som uppstår är investeringskostnader samt drift- och underhållskostnader. Miljöpåverkan från betongkonstruktioner i produkt skedet består av materialframställning, byggtransporter och produktion på byggarbetsplatserna. totala växthusgasutsläppet summeras och beräknas i kg CO2-ekv. Syftet med detta examensarbete är att studera den långsiktiga hållbarheten hos UHPC med hjälp av beräkningsmodeller såsom livscykelanalys och livscykelkostnadsanalys med avsikt att applicera reparationstekniken. Flera UHPC recept ställs mot det konventionella reparationsmaterialet detta för att kunna bedöma miljöpåverkan och kostnadseffektiviteten hos materialen. Dvs om det går det att minska klimatutsläppet och kostnaderna. De jämförda recepten är olika UHPC-recept samt traditionell betong. Recepten appliceras slutligen på en befintlig bropelare för att undersöka de olika receptens tillämpbarhet som reparationsmaterial ur ett hållbarhetsperspektiv. Det saknas tillräckligt med kunskap om UHPC:s långtidseffekter, speciellt om reparationsintervall. Med åtanke på materialets höga draghållfasthet och beständighet tillsammans med UHPC:s strukturella egenskaper har antaganden gjorts att materialet är reparationsfri under konstruktionens livslängd. Det vill säga att bropelaren som undersökts med UHPC i studien inte behövt repareras under sin livslängd. Resultatet från livscykelkostnadsanalysen visar att UHPC är dyrare i både kubikmeter (m3) och kvadratmeter (m2) med tanke på täckskiktets tjocklek än traditionell betong i materialpriset. Men med tanke på att UHPC är underhållsfritt har den en mindre livscykelkostnad. Resultatet från livscykelanalysen visar att UHPC blandningarna har större miljöpåverkan per kubikmeter. Då de olika täckskiktetstjocklek relateras till pelarens längd erhålls resultat där UHPC medför slankare konstruktioner och besparingar upp emot 50% mindre betongvolym (för den 6 m långa pelaren i fallstudien). Med UHPC som reparationsmaterial medför det till att bron inte behöver repareras under dess livslängd. Bropelaren som repareras med UHPC kommer därför ha en mindre miljöpåverkan än den traditionella betongen. Långsiktig hållbarhet och mindre totala växthusgasutsläpp (som är i riktlinje med EU:s och regeringens klimatkrav) erhålls för anläggningskonstruktioner med UHPC. / The construction industry has a negative climate impact and so does the infrastructure. Which is due to frequent repairs that are not sustainable. Many countries have therefore tried to explore the possibility of finding a long-term and sustainable alternative to conventional repair materials. Different materials are examined, different optimized concrete recipes are tested to understand how the environmental impact can be minimized and the service life of concrete structures extended. When repairing a bridge, it is important to take into account both costs and environmental impact throughout its life cycle. Costs that arise are investment costs as well as operating and maintenance costs. The environmental impact from concrete structures in the product phase consists of material production, construction transports and production at construction sites. The total greenhouse gas emissions are summed up and calculated in kg CO2 eq. The purpose of this thesis is to study the long-term sustainability of UHPC using calculation models such as life cycle analysis and life cycle cost analysis with the intention of applying the repair technique. Several UHPC prescriptions are set against the conventional repair material in order to be able to assess the environmental impact and cost-effectiveness of the materials. That is, if it is possible to reduce climate emissions and costs. The compared recipes are different UHPC recipes and traditional concrete. The recipes are finally applied to an existing bridge pillar to investigate the applicability of the various recipes as repair materials from a sustainability perspective. There is a lack of knowledge about the long-term effects of UHPC, especially about repair intervals. Given the high tensile strength and durability of the material together with the structural properties of the UHPC, it has been assumed that the material is repair-free for the life of the structure. That is, the bridge pillar examined with UHPC in the study did not need to be repaired during its lifetime. The results from the life cycle cost analysis show that UHPC is more expensive in both cubicmeters (m3) and square meters (m2) given the thickness of the cover layer than traditional concrete in the material price. However, given that UHPC is maintenance free, it has a lower lifecycle cost. The results from the life cycle analysis show that the UHPC mixtures have a greater environmental impact per cubic meter when the cover layer varies. As the thickness of the different cover layers is related to the length of the pillar, results are obtained where UHPC leads to slimmer constructions and savings of up to 50% less concrete volume (for the 6 m long pillar in the case study). With UHPC as repair material, this means that the bridge does not need to be repaired during its service life. The bridge pillar that is repaired with UHPC will therefore have a smaller environmental impact than the traditional concrete. Long-term sustainability and smaller total greenhouse gas emissions (which are in line with EU and government climate requirements) are obtained for plant constructions with UHPC.

Page generated in 0.0947 seconds