Spelling suggestions: "subject:"représentation adjoint"" "subject:"représentation adjoints""
1 |
Torsion de Reidemeister non abélienne et forme volume sur l'espace des représentations du groupe d'un noeudDubois, Jérôme 10 October 2003 (has links) (PDF)
Pour un n\oe ud $K$ dans $S^3$, on construit dans l'esprit de Casson -- et plus précisément en s'inspirant des travaux ultérieurs de Lin (cf. J. Differential Geom. 35 (1992) 337-357) et Heusener (cf. Topology Appl. 127 (2003) 175-197) -- une forme volume sur l'espace des représentations du groupe $G_K$ du n\oe ud $K$ dans $SU(2)$. Plus exactement, si $\mathrm(Reg)(K)$ désigne l'ensemble des classes de conjugaison des représentations \emph(régulières) de $G_K$ dans $SU(2)$, alors $\mathrm(Reg)(K)$ est une variété unidimensionnelle et on établit qu'elle possède aussi une $1$-forme volume naturelle. On montre ensuite comment on peut interpréter cette forme volume en termes de torsion de Reidemeister non abélienne. On termine par des exemples : le calcul explicite de la forme volume que l'on vient de construire pour les n\oe uds toriques et les n\oe uds fibrés ainsi que celui de la torsion de Reidemeister des sphères d'homologie de Brieskorn à coefficients dans la représentation adjointe. On étudie également le comportement (à signe près) de la forme volume que l'on a construite sous l'effet d'une mutation.
|
Page generated in 0.1351 seconds