Spelling suggestions: "subject:"reprogramming"" "subject:"deprogramming""
191 |
Immunobiology and Application of Toll-Like Receptor 4 Agonists to Augment Host Resistance to InfectionHernandez, Antonio, Patil, Naeem K., Stothers, Cody L., Luan, Liming, McBride, Margaret A., Owen, Allison M., Burelbach, Katherine R., Williams, David L., Sherwood, Edward R., Bohannon, Julia K. 01 December 2019 (has links)
Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.
|
192 |
Exposition à l'alcool pendant la période préimplantatoire : conséquences sur l'épigénome et le développement embryonnaireLegault, Lisa-Marie 08 1900 (has links)
Une exposition prénatale à l’alcool peut altérer le développement embryonnaire et causer le Trouble du Spectre de l’Alcoolisation Fœtale (TSAF). Les mécanismes moléculaires menant aux symptômes observés chez les enfants atteints sont toutefois méconnus. Plus encore, bien que les taux de consommation excessive d’alcool (binge-drinking) et de grossesses non-planifiées soient en hausse à travers le monde, les impacts d’une exposition prénatale à l’alcool pendant la préimplantation de l’embryon, sont inconnus et peu étudiés. Dans cette thèse, je souhaitais caractériser les impacts morphologiques d’une exposition à l’alcool pendant la préimplantation sur l’embryon en développement. De plus, je voulais définir les mécanismes moléculaires impliqués dans le cerveau antérieur ainsi que dans le placenta embryonnaire, en plus d’évaluer l’effet d’une exposition à l’alcool pendant la préimplantation sur certaines fonctions cognitives au stade post-natal.
Notre hypothèse de recherche est qu’une exposition à l’alcool de type aigu pendant la préimplantation entrainera des erreurs dans l’établissement du programme épigénétique embryonnaire, causant des altérations dans les profils de méthylation d’ADN et d’expression des gènes chez l’embryon et son placenta qui persisteront tout au long de la gestation. Plus encore, nous croyons que ces dérégulations moléculaires altèreront les fonctions cognitives à long terme chez les souriceaux exposés.
Pour répondre à ces questions, nous avons établi un modèle murin d’exposition à l’alcool de type aigu pendant la préimplantation en injectant des femelles gestantes au jour embryonnaire 2.5 (E2.5), correspondant au stade 8-cellules, avec deux doses de 2.5g/kg d’alcool séparées par 2 heures d’intervalle. Nous avons récolté des embryons à mi-gestation (E10.5), évaluer la morphologie puis nous avons isolé le cerveau antérieur pour étudier la méthylation d’ADN et l’expression génique. Nous avons aussi récolté des embryons en fin de gestation (E18.5) et leur placenta pour procéder à des analyses de méthylation d’ADN et de l’expression génique, en plus d’effectuer des analyses histologiques des placentas. Finalement, nous avons aussi laissé naître des souris issues de notre modèle d’exposition à l’alcool pendant la préimplantation pour évaluer certaines fonctions cognitives, notamment l’anxiété, la sociabilité et la mémoire, en procédant à des tests de comportement.
Nous avons d’abord observé une augmentation des anomalies morphologiques chez l’embryon à mi-gestation à la suite de l’exposition prénatale à l’alcool. Nous avons aussi découvert que l’exposition prénatale, pendant la préimplantation, engendrait des différences de méthylation d’ADN dans le cerveau antérieur à mi-gestation et en fin de gestation, dans plusieurs voies biologiques reliées au développement embryonnaire et au fonctionnement du système nerveux. La plupart des régions différentiellement méthylées (DMRs) et des gènes différentiellement exprimés (DEGs) étaient spécifiques à chaque sexe, avec peu de régions partagées entre les mâles et les femelles. Nous avons aussi identifié des DMRs et DEGs spécifiques à chaque sexe ou partagés entre les deux sexes, dans les placentas en fin de gestation en plus de démontrer une baisse du poids fœtal chez les embryons mâles exposés à l’alcool. Enfin, nous avons démontré que l’exposition prénatale pendant la préimplantation causait une baisse de la sociabilité et de la mémoire à court-terme, sans avoir d’effet sur le niveau d’anxiété des souris
En conclusion, nous avons démontré qu’une exposition prénatale à l’alcool en tout début de grossesse affecte le développement embryonnaire, via l’épigénome et le transcriptome du cerveau antérieur et du placenta, et entraine des conséquences à plus long terme sur les fonctions cognitives. En perspective, nous souhaitons établir les profils de méthylation d’ADN et d’expression génique précisément dans certains sous-types cellulaires du cerveau, dont les interneurones GABAergiques afin de mieux définir les mécanismes moléculaires derrière les altérations observées. / Prenatal alcohol exposure can alter embryonic development and lead to Fetal Alcohol Spectrum Disorder (FASD). However, the molecular mechanisms underlying the symptoms in affected children remain poorly understood. Furthermore, despite the increasing rates of binge drinking and unplanned pregnancies worldwide, the impacts of prenatal alcohol exposure during the preimplantation stage of embryonic development are largely unknown and understudied.
In this thesis I aimed to characterize the morphological effects of alcohol exposure during preimplantation on developing embryos. Additionally, we sought to define the extent of DNA methylation defects and gene expression in the anterior brain and embryonic placenta. Furthermore, we aimed to evaluate the effects of our preimplantation alcohol exposure on certain cognitive functions in the postnatal stage.
Our research hypothesis is that acute alcohol exposure during preimplantation will lead to errors in establishing the embryonic epigenetic program, causing alterations in DNA methylation profiles and gene expression in both the embryo and its placenta, persisting throughout gestation. We also believed that these molecular dysregulations would result in long-term cognitive impairments in exposed pups.
To address these questions, we established a preclinical mouse model of acute alcohol exposure during preimplantation by injecting pregnant females on embryonic day 2.5 (E2.5), corresponding to the 8-cell stage, with two doses of 2.5g/kg of alcohol, separated by a 2-hour interval. We collected embryos at mid-gestation (E10.5), assessed for morphological defects and isolated the forebrain for DNA methylation and gene expression studies. We also collected embryos at late gestation (E18.5) along with their placenta for DNA methylation and gene expression analyses, as well as histological examinations of fixed placentas. Finally, we allowed mice from our preimplantation alcohol exposure model to be born and assessed specific cognitive functions such as anxiety, sociability, and memory through behavioral tests.
First, we observed an increase in morphological anomalies in mid-gestation embryos following prenatal alcohol exposure and discovered that prenatal exposure during preimplantation led to DNA methylation differences in the forebrain at mid-gestation and late gestation, affecting various biological pathways related to embryonic development and nervous system function. Most of the differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were sex-specific, with only few regions shared between males and females. We also identified sex-specific and shared DMRs and DEGs in late gestational placentas. Additionally, we demonstrated a decrease in fetal weight in male embryos and showed that preimplantation alcohol exposure caused reduced sociability and short-term memory without affecting the anxiety levels of the mice.
In conclusion, we have shown that early preimplantation alcohol exposure affects embryonic development through the epigenome and transcriptome of the anterior brain and placenta, leading to long-term cognitive consequences. Moving forward, we intend to establish DNA methylation and gene expression profiles specifically in certain brain cell subtypes, including GABAergic interneurons, to better define the molecular mechanisms underlying the observed alterations.
|
193 |
From Mammalian Cell Culture to Aquatic Species: Deciphering the role of the Kynurenine-Tryptophan Ratio under Environmental Stress / Kynurenine-Tryptophan Ratio in Stress: Cells to SpeciesJamshed, Laiba January 2024 (has links)
Monitoring the impact of anthropogenic activities, particularly in industrial regions,
requires ecological screening tools and frameworks that provide a comprehensive
understanding of ecosystem responses to environmental changes. Biological indicators,
organisms like algae, insects, fish, and sentinel mammals, are critical for assessing
ecosystem health, particularly in areas of high industrial activity. The aim of this thesis was
to identify a cross-species biomarker that can assess organismal health and environmental
stress across various species, organs, and biological matrices.
A range of biological systems and signaling pathways related to xenobiotic metabolism,
energy homeostasis, immune responses, and stress adaptation were explored, leading to the
identification of the Tryptophan-Kynurenine Pathway, which consumes 60-90% of
tryptophan in vertebrates. Tryptophan and its metabolites play key roles in diverse
physiological processes, including cell growth and maintenance, immunity, disease states,
and the coordination of adaptive responses to environmental and dietary cues. This adaptive
response suggests that kynurenine-tryptophan ratio (KTR) may serve as a marker for
exposure to a variety of environmental stress conditions, including toxicants, nutrient
scarcity, predatory stress, and habitat loss—stressors that are prevalent in areas of high
industrial activity. In recent years, the KTR is increasingly recognized as a sensitive
biomarker in human diseases induced or exacerbated by stress; however, its role in
environmental exposure and wildlife health remains unexplored. This thesis explores the
question of whether KTR can be utilized as a cross-species biomarker for environmental
stress or environmental exposure to toxicants, particularly focusing on the Athabasca Oil
Sands Region (AOSR).
In vitro studies with mammalian hepatocytes exposed to polycyclic aromatic compounds
(PACs): benzo[a]pyrene (BaP), and a Bitumen Water Accommodated Fraction (BitWAF)
demonstrated that KTR increases were driven by elevated kynurenine levels, indicating
disruption of tryptophan metabolism via the aryl hydrocarbon receptor (AhR). Further
studies using acid extractable organics from Oil Sands Process-Affected Water (OSPW),
Naphthenic Acid Fraction Components (NAFCs) showed metabolic reprogramming,
including altered glucose and fatty acid uptake and mitochondrial dysfunction, mediated
through PPARα activation and upregulation of Tdo2, the enzyme responsible for
kynurenine production.
In vivo studies of longnose and white suckers from the AOSR were conducted to assess the
relationship between KTR and CYP1 enzyme activity (EROD). These studies revealed
species-specific responses, with an inverse correlation between KTR and EROD in
longnose suckers and a direct correlation in white suckers. These findings validate KTR as
a biomarker for environmental exposure in wildlife, with significant implications for
monitoring ecosystem health. Collectively, this work demonstrates the potential of KTR as
a novel biomarker for environmental toxicology, offering a valuable tool for assessing
organismal stress across species in response to environmental contaminants. / Thesis / Doctor of Philosophy (PhD) / Human activities, especially industrial operations, can significantly impact the
environment. To monitor these effects, scientists use various tools and organisms to assess
ecosystem health. This research introduces a new approach to measuring environmental
stress in wildlife by focusing on two key molecules: tryptophan and kynurenine. These
molecules are part of a conserved biological pathway that helps all organisms manage
stress, repair cells, adapt to their environment, and maintain overall health. Tryptophan, an
essential amino acid, is broken down into kynurenine, and the balance between them—
known as the kynurenine-tryptophan ratio (KTR)—can indicate the level of stress an
organism is experiencing.
This thesis investigates whether KTR can detect environmental stress caused by industrial
activity, particularly from petroleum-derived chemicals in the Athabasca Oil Sands Region
(AOSR). In laboratory experiments, mammalian liver cells were exposed to oil sands
compounds and complex mixtures from oil sands wastewater. These compounds changed
KTR, showing that the liver’s stress response was activated, and tryptophan metabolism
was disrupted. The study also found that these chemicals affected cellular energy use and
the way cells process fats and sugars. Furthermore, we examined fish species in the AOSR:
longnose and white suckers. Results showed that KTR varied depending on the species and
the location of exposure. In white suckers, KTR increased in response to stress, while in
longnose suckers, it decreased, indicating species-specific responses to environmental
changes.
Overall, our findings suggest that KTR could serve as a useful tool for measuring
environmental stress in different species and ecosystems, especially in areas affected by
anthropogenic or industrial activity. Understanding how KTR changes in response to
pollution can help scientists better monitor and protect wildlife and ecosystem health.
|
Page generated in 0.0521 seconds