• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 14
  • Tagged with
  • 44
  • 44
  • 44
  • 44
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification par complémentation d'un gène qui restaure la sécrétion de l'invertase chez Saccharomyces cerevisiae W303-1b

Huard, Sylvain 03 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Chez les cellules eucaryotes, la biosynthèse des protéines est essentielle à la vie. Pour accomplir leurs fonctions biologiques, les protéines doivent être acheminées au bon endroit dans la cellule, notamment par la voie de sécrétion. Cette voie de transport est organisée en diverses structures membranaires distinctes. La porte d'entrée des protéines sécrétées et des protéines membranaires dans la voie de sécrétion est le réticulum endoplasmique. À cet endroit, les protéines sont repliées correctement, glycosylées et forment des ponts disulfures. Par la suite, la plupart d'entre elles sont acheminées à l'appareil de Golgi par des vésicules de transport. Dans ce compartiment intracellulaire, les groupements glycosyls des glycoprotéines sont alors modifiés. Finalement, certaines protéines sont transportées à la vacuole ou à la membrane plasmique par une autre série de vésicules de transport. Chez Saccharomyces cerevisiae, la voie de sécrétion des protéines est très semblable à celle des cellules de mammifères dans sa capacité de replier les protéines, de les glycosyler et de les sécréter. Ces propriétés dépendent du bon fonctionnement de la voie de sécrétion. Nos travaux ont consisté à étudier le transport de l'invertase vers l'espace périplasmique chez Saccharomyces cerevisiae W303-lb. Des études antérieures ont démontré que W303-lb manifeste à 37 °C un ralentissement de la sécrétion de l'invertase dans l'espace périplasmique comparativement à SEY6210. Notre hypothèse de travail vise sur l'identification, par complémentation génétique, d'un gène défectueux responsable du phénotype observé chez W303-1 b. De plus, ce défaut de sécrétion est corrigé par la délétion du gène SLA 1 chez W303-1 b. Sial p est une protéine liant l'actine qui semble importante dans le transport de certaines protéines entre le réticulum endoplasmique et l'appareil de Golgi. Nous avons montré qu'un fragment d'ADN génomique du chromosome IX restaure la sécrétion de l'invertase chez W303-1 b. Ce fragment contient trois gènes (ECM37, YILJ 45C et TID3) où seul le gène YILJ 45C possède un cadre de lecture ouverte (ORF) entier. Finalement, plusieurs hypothèses ont été émises sur les effets possibles de ces gènes sur la sécrétion de l'invertase, ce qui permettra éventuellement d'élaborer de nouvelles hypothèses concernant l'organisation du système de sécrétion chez Saccharomyces cerevisiae et les liens moléculaires qui peuvent exister entre le cytosquelette et la machinerie protéique régulant le transport des protéines.
2

Interaction réciproque entre la palmitylation et la phosphorylation du récepteur β₂-adrénergique

Adam, Lynda 12 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Le récepteur β₂-adrénergique est, parmi les récepteurs couplés aux protéines G, le mieux connu et, par conséquent, sert de prototype pour cette grande famille de récepteurs. Les différents mécanismes responsables de régulariser l'activité fonctionnelle du β₂AR sont relativement bien établis. Par exemple, à la suite d'une stimulation soutenue par un agoniste, la phosphorylation et la palmitylation du β₂AR sont modifiées. Cependant, contrairement à la phosphorylation, peu d'études se sont attardées à caractériser la palmitylation du récepteur. Cette modification consiste à l'ajout d'un acide gras saturé de seize atomes de carbone sur le résidu cystéine 341 du récepteur via une liaison thioester. Selon les résultats d'études antérieures, la palmitylation pourrait correspondre à un niveau supplémentaire de régulation de l'activité fonctionnelle du β₂AR. Le premier objectif vise donc à mieux comprendre la dynamique de palmitylation du récepteur. A la suite d'expériences de radiomarquages et de "pulse-chase", nous avons démontré que la palmitylation est une modification post-traductionnelle réversible durant la vie du récepteur indépendamment du système d'expression utilisé (cellules de mammifères et cellules d'insectes). De plus, l'état d'activation du récepteur influence grandement sa palmitylation. L'activation du récepteur par un agoniste aboutit à une augmentation nette de la vitesse de renouvellement du palmitate associé au récepteur. Dans ce contexte d'activation, nous avons mis en évidence par mutagenèse dirigée que le site de phosphorylation de la PKA (343RRSS3) dans la portion C-terminale du récepteur y joue un rôle déterminant. La phosphorylation de ce site de la PKA serait responsable, par une répulsion entre les charges négatives des phospholipides de la membrane plasmique, et celles des serines phosphorylées 345 et 346, de la diminution de la stabilité de l'ancrage du palmitate dans la membrane. Ultimement, la phosphorylation du récepteur favoriserait une forme non palmitylée du β₂AR. La déphosphorylation du β₂AR serait nécessaire pour permettre au récepteur d'être de nouveau palmitylé. Dans l'ensemble, ces résultats suggèrent que la palmitylation est régulée non seulement à la suite de l'activation du récepteur, mais également par l'état de phosphorylation du β₂AR. Cette interaction entre la phosphorylation et la palmitylation du récepteur a été observée en utilisant des cellules de mammifère et des cellules d'insectes (Sf9). Cependant, une différence existe entre ces deux systèmes en ce qui a trait à la vitesse de renouvellement du palmitate associé au récepteur. Dans les cellules de mammifères, la vitesse de renouvellement du palmitate associé au récepteur est beaucoup plus lente que celle observée dans les cellules d'insectes (Sf9). Pour cette raison, nous croyons que la palmitylation pourrait avoir d'autres fonctions. Cependant, le ou les rôles pouvant être rattachés à cette modification demeurent à être déterminés. Nous avons également démontré que la palmitylation du β₂AR pouvait être régulé indépendamment de l'activation du récepteur. Nous avons mis en évidence le fait que e monoxyde d'azote exerce une modulation sur l'état de palmitylation du β₂AR. Les résultats de cette étude ont démontré que la présence de monoxyde d'azote diminue l'incorporation du palmitate tritié au niveau du récepteur activé ou pas par un agoniste tel que l'isoprotérénol. Cet effet du monoxyde d'azote est accompagné du découplage fonctionnel du récepteur avec la protéine Gas. Selon nos résultats, le monoxyde d'azote module directement la voie β₂-adrénergique en régulant l'état de palmitylation du β₂AR.
3

Phosphate homeostasis and transport in relation with the liver microsomal glucose-6-phosphatase system

Xie, Wensheng 07 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / La production hépatique de glucose dérive du glucose-6-phosphate (G6P) produit par la glycogénolyse et la néoglucogénèse et son hydrolyse subséquente par la glucose-6-phosphatase (G6Pase). C'est pourquoi la G6Pase joue un rôle crucial dans le maintien de la glycémie. La G6Pase est un système enzymatique à plusieurs composantes, situé dans le réticulum endoplasmique (RE) et est exprimé dans les deux organes néoglucogéniques, foie et rein, ainsi que dans l'intestin. Jusqu'à maintenant, deux composantes du système ont été clonées, l'unité catalytique qui est une protéine de 36 kDa (p36) et un transporteur putatif de G6P de masse moléculaire de 46 kDa (p46). Depuis le clonage du gène et de l' ADNc de p36, la régulation de l'expression de p36 a été étudiée en détail. Des effecteurs positifs qui augmentent l' ARNm de p36 comprennent le glucose, l' AMP cyclique, les glucocorticoïdes et les acides gras, tandis que l'insuline diminue l'abondance de l' ARNm de p36. Le glucose, l' AMP cyclique et les glucocorticoïdes ont également un effet positif sur l' ARN m de p46, tandis que l'insuline contrecarre ces effets. Deux modèles ont été proposés pour expliquer le mécanisme fonctionnel du système G6Pase : le modèle de transport du substrat et le modèle conformationnel. Le premier propose que la G6Pase est un système à plusieurs composantes, comprenant une unité catalytique dont le site actif est orienté vers la lumière du RE, un transporteur de G6P appelé Tl, un transporteur de phosphate inorganique (Pi) appelé T2 et un transporteur de glucose appelé T3. Tl serait l'étape limitante de la conversion de G6P en glucose et Pi. Il a été proposé que des mutations dans les gènes de ces quatres composantes causent des glycogènoses de type la, lb, le, and Id, respectivement. Le modèle conformationnel propose que la G6Pase est une protéine formant un canal dans la membrane du RE, où le site actif est enfoui dans une poche hydrophile. Le substrat a accès au site actif via le canal. Le processus hydrolytique a lieu dans la poche hydrophile et les produits sont délivrés dans la lumière et exportés dans le cytoplasme par l'intermédiaire du canal. Les cinétiques rapides d'hydrolyse du G6P indiquent une transition hystérétique dans le processus catalytique qui réduit la vitesse de la réaction au profit d'une spécifité accrue pour le G6P. Le phosphate inorganique (Pi) est une composante fondamentale de l'organisme par son implication dans de nombreuses fonctions physiologiques. L'homéostasie du Pi est règlée au niveau du rein par sa réabsorption par un co-transporteur de sodium et de phosphate (NaPi), essentiellement }'isoforme NaPi-2. Le contenu en Pi dans la diète, qui est important pour le maintien de la phosphatémie normale; affecte l'expression de la NaPi-2, de l'hormone parathyroïdienne, du Pi et du calcium sérique. L'hypophosphatémie liée au chromosome X est causée par une mutation dans le gène PHEX (pour : Phosphate-regulating gene with Homologies to Endopeptidase located on the X chromosome). Des travaux établissant que des perturbations dans l'homéostasie du phosphate pouvaient causer une intolérance au glucose et une résistance à l'insuline suggèrent une association entre l'homéostasie du glucose et du phosphate. La nature même de cette association est néanmoins encore inconnue. Nous avons donc investigué le métabolisme du glucose hépatique lors d'une diète déficiente en phosphate ainsi que chez un modèle animal d'hypophosphatémie liée au chromosome X, la souris Hyp. Les résultats montrent que le phosphate plasmatique était diminué chez des rats nourris pendant 48h avec une diète déficiente en Pi (-Pi) comparés à une diète contrôle (+Pi). Dans le groupe (-Pi), l'activité de la G6Pase hépatique était augmentée lorsque mesurée dans des microsomes intacts ou perméabilisés au moyen de détergent, à des concentrations de substrat physiologiques ou saturantes. Cette activité accrue était due à une stimulation de l'expression de l'unité catalytique, comme en témoigne l'augmentation de l'abondance de l' ARN m et de l'immunoréactivité de p36. L' ARNm de p46 était également augmentée dans le groupe (-Pi), mais sans changement dans la quantité de protéine. Nos études subséquentes montrèrent que dans le foie des animaux du groupe (-Pi), la pyruvate kinase était inactivée et le phosphoenolpyruvate augmenté, et que le fiuctose-2,6- bisphosphate, un inhibiteur de la néoglucogénèse, était réduit de moitié. L'activité de la glucokinase n'était pas modifiée et celle de la phosphoenolpyruvate kinase était marginalement augmentée par la diète (-Pi), L'ensemble de ces résultats peuvent s'expliquer par l'augmentation de la concentration de l' AMP cyclique observée dans le foie des rats nourris avec la diète (-Pï). Ces résultats suggèrent que la néoglucogénèse hépatique pourrait être stimulée dans des conditions d'hypophosphatémie et qu'une production accrue de glucose pourrait contribuer à une altération du métabolisme du glucose. Cette possibilité est renforcée par l'observation que la glycémie des rats nourris avec la diète (-Pi) était nettement augmentée, tandis que la concentration de l'insuline plasmatique était diminuée. Un test de tolérance intravéneuse au glucose n'a pas permis d'observer de différence au niveau de la normalisation de la glycémie, mais a cependant indiqué une légère intolérance au glucose dans la mesure ou le pic de glucose atteint après le test était plus élevé dans le groupe (-Pi). Par ailleurs, la production endogène de glucose était nettement moins inhibée après un bolus de glucose au cours du test de tolérance intravéneuse au glucose. Afin d'élucider d'avantage la relation entre homéostasie du glucose et du :?i, le système G6Pase de foie et de rein furent examinés chez la souris Hyp. Les résultats montrent que l'activité de la G6Pase était augmentée dans ces organes des souris Hyp, semblablement à l'augmentation observée chez les rats nourris avec la diète (­Pi). Cette activité accrue de la G6Pase chez la souris Hyp s'explique par une plus grande quantité d' ARNm et de protéine p36, aussi bien dans le foie que dans le rein. Contrairement au modèle diététique d'hypophosphatémie, chez la souris Hyp l'abondance de l' ARNm et l'immunoréactivité du p46 hépatique et rénal sont nettement diminués. Globalement, l'hypophosphatémie résultant soit d'une carence alimentaire ou due à un défaut génétique a pour effet d'augmenter de façon consistante l'activité de la G6Pase, elle-même causée par une stimulation de l'expression de son unité catalytique, p36. L'expression de p46 est différemment règlée par la diète déficiente en Pi ou dans le modèle génétique, indicant que d'autres facteurs que l'hypophosphatémie affectent ce gène dans ces conditions. Il apparaît que la régulation de l'expression de p3 6 et de p46 est distincte. Bien que le système G6Pase a été étudié depuis vo1c1 cinquante ans, son organisation et son mécanisme fonctionnel restent à être définis. Les propriétés cinétiques de transport du substrat, le G6P, et des produits, le glucose et le Pï, ne sont pas encore élucidés. Ces propriétés ont été investiguées au moyen d'un appareil à collection et filtration rapide (FSRF A). Le transport microsomal du Pi montre des valeurs identiques de T v. à différentes concentrations de KH2P04. Le HgCh et des inhibiteurs potentiels de la G6Pase n'affectent pas les propriétés cinétiques du transport de Pi. On n'a également pas trouvé d'échange accéléré de Pi ou de saturation du transport de celui-ci. Ces résultats ne sont pas compatibles avec l'existence d'un transporteur spécifique pour le Pi dans la membrane du RE. Des conclusions similaires ont été tirées d'études du transport microsomal du glucose. L'accumulation intramicrosomale de radioactivité à partir de [U-14C]G6P ou de [32P]G6P correspond à des paramètres cinétiques différents, indicant que les substances accumulées dans les microsomes à partir de G6P sont les produits de la réaction de la G6Pase plutôt que le substrat. Cette observation suggère que l'étape de transport du G6P, si tant est qu'elle existe, n'est pas l'étape limitante au cours de la conversion du G6P en glucose et Pï, Les paramètres cinétiques d'accumulation de radioactivité à partir de [32P]G6P et les effets des inhibiteurs de la G6Pase démontrent que cette accumulation est étroitement couplée à l'activité hydrolytique de la G6Pase. De plus, nous n'avons pas observé d'échange de transport entre le G6P et le Pi ou le glucose, en accord avec l'absence présumée de transporteur spécifique pour le Pi ou le glucose. Globalement, ces données sont compatibles avec le modèle conformationnel de la G6Pase. Une nouvelle version de ce modèle, intégrant les résultats concernant le transport de Pï et de glucose, propose qu'un pore dans la membrane du RE puisse remplir la fonction d'influx/efllux des produits de la G6Pase. / Glucose-6-phosphatase (G6Pase), a multicomponent enzyme, plays a crucial role in glucose metabolism by hydrolyzing glucose-6-phosphate (G6P) into glucose and inorganic phosphate (Pi). G6Pase is located in the endoplasmic reticulum membrane and highly expressed in liver and kidneys. Two components of G6Pase have been cloned, the catalytic subunit (p36) and the putative G6P translocase (p46). Despite the great progress in G6Pase field, the hydrolytic mechanism of G6Pase is still in debate. Meanwhile, evidence also indicates that Pi deficiency is related to impaired glucose metabolism with an unclear mechanism. In this thesis, the effects of Pi deficiency on G6Pase and other glucoregulatory factors were investigated. Meanwhile, the hydrolytic mechanism of G6Pase was also studied in terms of its transport properties. Results showed that compared to the rats fed with a control diet ( +Pi), in the rats fed with a phosphate deficient diet (-Pi) for 48h, plasma phosphate concentration was decreased. Liver G6Pase was upregulated, gluconeogenesis key steps ;vere stimulated, liver glycogen content was decreased and plasma glucose concentration was increased in the fed (-Pi) group. These changes could be accounted for by increased liver cAMP content and decreased plasma insulin concentration in the fed (-Pi) group. During an intravenous glucose tolerance test, although similar glucose fall rates and insulin responses were observed in overnight fasted (+Pi) and (-Pi) group, a tendency to hyperglycemia and less suppressed endogenous glucose production were obtained in the (-Pi) group. Ali of these results demonstrated that under the phosphate deficient condition, G6Pase was upregulated and glucose production was enhanced. The enhanced glucose production, potentially caused by the altered insulin/glucagon ratio, may contribute to the impaired glucose metabolism. To further elucidate the relationship between glucose homeostasis and phosphate homeostasis, liver and kidney G6Pase system were investigated in X-linked hypophosphatemic mice, Hyp mice. Results showed G6Pase activity was increased in Hyp mouse liver and kidney. Consistently, the protein amount and mRNA abundance of the catalytic subunit, p36, were increased in Hyp mouse liver and kidney. In contrast, the mRNA abundance and protein amount of p46 were decreased in Hyp mouse liver and kidney. These results further dernonstrated that G6Pase activity was stimulated by Pi deficiency. The increased G6pase activity may enhance glucose production, probably contributing to impaired glucose metabolisrn. The hydrolytic mechanism of G6Pase was investigated via transport studies. Inorganic phosphate (KH2P04) transport across rnicrosornes showed identical T 112 values around 23 s at different KH2P04 concentrations, which were unaffected by potential inhibitors of G6Pase. Neither accelerated exchanging transport nor saturable effect was observed in this process. These results supported no specific inorganic phosphate transporter in the ER membrane. Similar phenomena were observed for the glucose transport process, which was characterized with T 112 values of 40 s. Tracer equilibration during [U-14C]- and [32P]G6P hydrolysis proceeded with T 112 values of 4 7 and 21 s, respectively. Steady state levels of tracer accumulation from [U-14C]­and [32P]G6P were also different frorn each other and had a similar ratio to that of their T 112 values. This result dernonstrated that the accumulated radiotracer was the product, Pi or glucose, rather than the substrate G6P. Effects of unlabelled G6P and inhibitors on [32P]G6P uptake dernonstrated that G6P uptake and hydrolysis were tightly coupled processes. Moreover, no exchanging transport between G6P and inorganic phosphate/glucose was observed. These results are not compatible with the substrate-transport rnodel of G6Pase. Based on these data, a new combined­conformational model is proposed to explain the G6Pase system. In this model, G6P transport/hydrolysis are tightly coupled processes whereas glucose and phosphate share with water and a variety of other organic and inorganic solutes a common pore­like structure accounting for their transport through the ER membrane. The p46 protein rnay be more like a G6P sensor than a G6P transporter. The binding of G6P to p46 may affect the conformation of p46 and p36 via their coupling interaction. The conformational change rnay account for the specificity and latency of G6Pase.
4

Regulation of the expression of the two components of liver glucose-6-phosphatase

Li, Yazhou 07 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / La glucose-6-phosphatase (G6Pase) catalyse l'hydrolyse du glucose-6- phosphate (G6P), qui est l'étape terminale aussi bien de la glycogénolyse que de la néoglucogénèse. La localisation dans la membrane du réticulum endoplasmique de la G6Pase est suggérée sur des bases biochimiques et génétiques et cette enzyme est constituée de plusieurs composantes. À ce jour, deux composantes du système G6Pase ont été clonées, une sous-unité catalytique de masse moléculaire 36 kDa (p36) et un transporteur putatif de G6P de 46 kDa (p46). Des études topologiques indiquent que p36 et p46 sont très hydrophobiques, avec 9 et 10 domaines transmembranaires, respectivement. Deux modèles différents ont été proposés pour décrire le système complexe de la G6Pase, nommés le modèle de transport du substrat et le modèle conformationnel. La distribution tissulaire de p36 est essentiellement dans les organes néoglucogéniques comme le foie, le cortex rénal et l'intestin grêle, tandis que l'expression de p46 est plus étendue, étant présente dans la majorité des tissus et dans plusieurs lignées cellulaires. La glycogènose de type I (GSD-I) est une maladie autosomale récessive causée par une déficience en G6Pase, caractérisée par une hypoglycémie sévère et une accumulation excessive de glycogène hépatique. Des mutations dans le gène de p36 sont trouvées essentiellement chez les patients GSD-Ia, tandis que des mutations dans le gène de p46 expliquent la majorité des cas de GSD-Ib, le et Id, nouvellement qualifiés de "non a". Puisqu'une augmentation dans l'activité de la G6Pase est associée avec les deux types de diabète sucré et peut donc contribuer à l'augmentation de la production hépatique de glucose dans cette condition, p36 et p46 peuvent être considérés comme des gènes-candidats pour le diabète. La surexpression de p36 dans des hépatocytes et in vivo au moyen d'un adenovirus résulte en une augmentation de la néoglucogénèse et en une diminution du flux glycolytique et de la synthèse de glycogène, tandis que la surexpression de p36 dans les cellules d'insulinome INS-1 invalide la sécrétion d'insuline induite par le glucose. Il est connu que l'activité de la G6Pase est augmentée dans le foie de rats à jeun ou diabétiques. Le clonage des gènes de la G6Pase (qui incluent maintenant les gènes de p36 et p46) et la disponibilité de sondes d' ADNc ont permis d'examiner si les changements d'activité de la G6Pase dans ces conditions était dûe à des altérations dans l'expression de ces gènes ou était la conséquence de modifications post-traductionnelles de l'enzyme. Il a été rapporté que dans les cellules FAO, le niveau d'ARNm de p36 était augmenté par I' AMP cylique et les glucocorticoïdes, tandis que l'insuline avait un effet dominant négatif de suppression de ce gène. Dans ces mêmes cellules, des concentrations élevées de glucose (25 mM) étaient associées avec une quantité accrue d' ARNm de p36 et cette observation fut ultérieurement confirmé dans des hépatocytes en culture primaire et in vivo. L'expression du gène de p36 est donc règlé par des facteurs nutritionels et hormonaux. La régulation du gène de p46 nouvellement cloné, qui joue un rôle essentiel dans la G6Pase, n'a pas encore été exploré. Dans notre travail nous avons caractérisé l'expression de p46 en parallèle avec p36, dans le diabète expérimental, la déficience alimentaire en Pi, divers traitements hormonaux et différentes concentrations de glucose. Chez les rats rendus diabétiques par traitement à la streptozocine, nous avons trouvé une activité élevée de la G6Pase associée avec une augmentation de l'abondance de l 'ARNm de p46 et une augmentation similaire de la protéine p46 dans le foie, le rein et l'intestin, outre la stimulation de l'expression du gène de p36 documenté auparavent. Chez les rats nourris avec une diète déficiente en Pi, les niveaux relatifs d' ARNm de p36 et de p46 étaient augmentés ensemble dans le foie de concert avec une activité accrue de la G6Pase. Nous avons de plus étudié la régulation gènique de p36 et p46 dans les cellules HepG2, dont les concentrations de nutriments et d'hormones peuvent être aisément manipulés dans le milieu de culture. Nous avons trouvé que le glucose causait une augmentation dose­dépendante dans l'expression des gènes de p36 aussi bien que de p46 au niveau de l 'ARNm et des protéines. Cependant, des études dose-réponse de différentes hormones et agents affectant l'expression des gènes de p36 et p46 ont révélé des sensibilités différentes de ces deux composantes du système G6Pase. Nous montrons dans les cellules HepG2 qu'alors que l'insuline, à des concentrations physiologiques (0.01-10 nM), supprimait l 'ARNm de p36, celle de p46 n'était affectée que de 20-30% et réduite au plus à 50% avec 1 µM d'insuline. De plus, l'AMP cyclique, le glucagon, ainsi que la thapsigargine (un inhibiteur de la Ca2+-ATPase du RE) augmentaient l'ARNm de p36 aux concentrations 10-100 nM, sans affecter la transcription du gène de p46. Par contre, la dexamethasone (0.1-100 nM) augmentait similairement l'ARNm de p36 et de p46. Afin de caractériser ultérieurement l'impact métabolique d'une expression accrue de p46 et de comprendre la fonction de la protéine p46, nous avons surexprimé celle-ci au moyen d'un adenovirus recombinant dans des hépatocytes de rat en culture primaire. Les résultats montrent que la surexpression de p46 a pour conséquence d'induire l' ARNm de p36 et l'activité de la G6Pase. On observait également une diminution de la synthèse du glycogène et du flux glycolytique ainsi qu'une augmentation de la dégradation du glycogène. Puisque des mutations de p46 ont été trouvées chez des patients GSD-1 non a, qui ont par rapport aux patients GSD-1 a des symptômes additionnels comme une neutropénie et une dysfonction des neutrophiles et des monocytes, nous avons formulé l'hypothèse que p46 pourrait avoir d'autres fonctions que celle de contrôler p36, qui est absent des leucocytes. De plus, nous avons d'abord découvert dans une librairie d' ADNc de leucocytes humains et avons ensuite confirmé dans des échantillons sanguins la présence de quatre transcrits différents du gène de p46, dont trois ne sont pas présent dans le foie. Cette découverte supporte la possibilité que d'autres produits du gène de p46, possédant des fonctions distinctes, puissent être formés par épissage alternatif. En conclusion, nos résultats indiquent: (1) que dans le diabète insulinoprive, l'hyperglycémie, la déficience en insuline et l'augmentation de l 'AMP cyclique due à des hormones contrerégulatrices non opposées peuvent contribuer de façon indépendante l'un de l'autre à une expression accrue des gènes de p36 et p46. La surexpression de p46 avec un adenovirus recombinant résulte en des changements métaboliques semblables à ceux d'une surexpression de p36, indicant que des dérégulations aussi bien de p36 que de p46 peuvent être impliquées dans l'activité accrue de la G6Pase, menant à une production hépatique de glucose plus forte qui peut exacerber l'hyperglycemie du diabète; (2) que la régulation hormonale distincte de p36 et p46 indique que celles qui affectent seulement p36 coïncide avec des modifications connues de la production hépatique de glucose, tandis que celles qui affectent p36 et p46 sont consistantes avec une stimulation de la synthèse de glycogène; (3) que p46 pourrait être une protéine multifonctionnelle avec des propriétés tissulaires spécifiques. Dans les tissus où p36 est présent, comme dans le foie, p46 pourrait founir le G6P nécessaire à son hydrolyse par p36. Dans d'autres tissus, qui ne possèdent pas p36, p46 a probablement d'autres fonctions qui sont déficientes dans les leucocytes des patients GSD-lb. / Glucose-6-phosphatase (G6Pase) plays an important role in glucose metabolism by catalyzing the terminal step of both glycogenolysis and gluconeogenesis. Although G6Pase is proposed to be a multifunctional and multicomponent system residing in the membrane of endoplasmic reticulum, until now neither the structure of its components nor the function of each protein has been totally understood. So far two components of the G6Pase system have been cloned, including the G6Pase catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46). Genetie deficiency of G6Pase leads to glycogen storage disease type-1 (GSD-1), while mutations in p36 and p46 genes account for GSD-Ia and most of GSD-1 non a respectively. Furthermore, diabetes mellitus is associated with increased G6Pase activity, which may contribute to the enhanced hepatic glucose production. Previous studies have shown that p36 gene express10n 1s under nutritional and hormonal regulation. In this work, the gene regulation of newly cloned p46 was investigated and compared with that of p36 gene. We found that under the conditions like increased glucose concentration, dietary phosphate deprivation or streptozotocin-induced diabetes, p36 and p46 genes were similarly up-regulated. However, the sensitivities of these two genes to different hormones or reagents were found to be quite different as shown in HepG2 hepatoma cells. Insulin has dominant negative effects on bath p36 and p46 gene expression, but compared to p36, p46 gene has a much .lower sensitivity to insulin. Glucagon, cAMP and thapsigargin significantly increase p36 gene transcription but barely affect p46 gene, while glucocorticoids remarkably and sensitively induce bath genes. Based on the distinct hormonal regulation of p36 and p46 gene expression, their possible roles in glucose metabolism were proposed. We explored in two ways to study the yet unclear p46 function: (1) On the one hand, in order to study the p46 function in hepatic G6Pase system, we perfonned p46 overexpression in hepatocytes via recombinant adenovirus mediated gene transfer, which resulted in induced p36 transcription and increased G6Pase activity. In addition, overexpression of p46 led to significant metabolic impacts in primary hepatocytes, including decreased glycogen synthesis, increased glycogen degradation and decreased glycolysis; (2) On the other hand, we studied p46 gene transcription in leucocytes, where p36 is absent, and identified four different p46 transcripts, three of which are not present in liver. We hypothesize that mutated p46 gene might be responsible for neutropenia and neutrophil dysfunctions seen in GSD-Ib and le; p46 may bear other functions in leucocytes by differential mRNA splicing. In conclusion, we characterized the gene regulation of newly cloned p46 gene, investigated effects of adenovirus mediated overexpression of p46 on glucose and glycogen metabolisms and discovered different transcripts of p46 gene in leucocytes. Key works: glucose-6-phosphatase catalytic subunit; putative glucose-6- phosphate translocase; glucose; phosphate; hormones; gene regulation; overexpress10n.
5

Étude des mécanismes de répression transcriptionnelle du gène de la proopiomélanocortine par les glucocorticoïdes : implication de Nur77/NGFI-B, un récepteur nucléaire orphelin

Martens, Christine 11 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Le récepteur nucléaire orphelin NGFI-B s'est démarqué des autres récepteurs nucléaires par sa capacité à lier I'ADN sous la forme de monomère. L'importance de ce facteur de transcription a été mise en évidence par son rôle dans l'apoptose des cellules T et par son implication à tous les niveaux de l'axe hypothalamo-hypophyso-surrénalien (axe HHS). Le stress induit une cascade neuroendocrinienne qui débute, au niveau de l'hypothalamus, par la sécrétion de CRH qui induit l'expression de NGFI-B dans les cellules corticotrophes de l'hypophyse, et NGFI-B à son tour induit la transcription du gène de la proopiomélanocortine (POMC) en liant un élément de réponse aux facteurs Nur, le NurRE. Cet élément de réponse a la particularité de lier des dimères de Nur77. La POMC est le précurseur de l'ACTH qui est le stimulus majeur de la synthèse des glucocorticoïdes. Les glucocorticoïdes activent ou répriment la transcription de différents gènes importants pour le métabolisme en liant un récepteur nucléaire (GR). Une surexpression de glucocorticoïdes peut avoir des conséquences néfastes sur l'organisme. Aussi régulent-ils leur propre synthèse en exerçant une rétro-inhibition de l'axe HHS en inhibant l'expression et la sécrétion du CRH et de la POMC/ACTH. Les glucocorticoïdes inhibent la transcription de la POMC induite par le CRH en agissant au niveau du NurRE en antagonisant l'activité transcriptionnelle de NGFI-B. Le but de cette étude consistait à déterminer les mécanismes qui sont sous-jacents à l'antagonisme transcriptionnel entre NGFI-B et GR. Nous avons émis l'hypothèse qu'une interaction protéine/protéine directe ou indirecte (séquestration d'un cofacteur commun aux deux récepteurs nucléaires) entre NGFI-B et GR est impliquée dans la répression de la transcription de la POMC. Afin de vérifier cette hypothèse nous avons utilisé des techniques qui permettent d'étudier la nature des interactions entre deux protéines. Ainsi, nous avons démontré une interaction directe entre NGFI-B et GR via leurs domaines de liaison à l'ADN. Cette interaction s'applique aux autres membres de la famille Nur. Nous avons également démontré que GR interagit avec NGFI-B sous la forme de monomère. En parallèle, nous avons observé que l'activité transcriptionnelle de NGFI-B est stimulée par des coactivateurs de la famille SRC et par CBP. Nous avons observé que les dimères ont une capacité plus grande à recruter les coactivateurs que les monomères. Certains résultats expérimentaux suggèrent que l'antagonisme transcriptionnel entre NGFI-B et GR puisse s'appliquer à la régulation de la transcription du gène codant pour le CRH. De plus, il a été démontré que dans les cellules T, les glucocorticoïdes bloquent l'apoptose induite par l'activation du TCR en antagonisant l'activité transcriptionnelle de NGFI-B. Ceci reflète l'importance de l'identification de ce nouveau mécanisme d'action des glucocorticoïdes. De plus, ce mécanisme est similaire à celui qui avait été démontré dans le contrôle de ['expression des gènes impliqués dans la réponse inflammatoire et/ou immunitaire où GR antagonise l'activité transcriptionnelle de NF-KBetAP-1.
6

Activité et inhibition d'une famille d'enzymes hautement résistantes au triméthoprime

Lafontaine, Kiana 08 1900 (has links)
L’usage excessif d’antibiotiques a provoqué l’émergence de résistance, constituant un problème sanitaire mondial. L’antibiotique triméthoprime (TMP) inhibe l’enzyme dihydrofolate réductase (FolA) des bactéries, interrompant la production d’un précurseur essentiel dans la synthèse des purines et empêchant ainsi la croissance bactérienne. Cependant, certaines bactéries produisent une seconde dihydrofolate réductase : une DfrB, appartenant à une famille d’enzymes hautement résistantes au TMP. Actuellement, dix membres de la famille DfrB ont été identifiés, qui partagent une identité de séquence élevée (74 – 98 %). Les enzymes DfrB sont constituées de domaines identiques de 78 acides aminés, de type ‘SH3-like’, qui s’homotétramérisent afin de former l’enzyme active. Les DfrB ne partagent aucune homologie de séquence ou de structure avec les FolA et aucun antibiotique n’a encore été développé pour contourner la résistance au TMP causée par les DfrB. Afin de mieux comprendre le domaine SH3-like, des homologues (DfrB-H) partageant 10 à 80 % d’identité avec la DfrB1 ont été identifiés et caractérisés. Ils possèdent une activité dihydrofolate réductase (Dfr) et confèrent de la résistance au TMP. De plus, afin de vérifier si les gènes dfrB se retrouvent dans divers environnements, une recherche dans une base de données métagénomiques a été entreprise, permettant de caractériser 10 nouvelles séquences homologues aux DfrB connues. En 2012, le groupe Pelletier a rapporté le premier inhibiteur spécifique d’une DfrB, et plusieurs autres depuis. Seule la DfrB1 a été caractérisée concernant son profil d’inhibition ainsi que sa thermostabilité inhabituelle. Ici, une méthode semi-automatisée sera développée pour caractériser les profils d’inhibition, de thermostabilité, de résistance au TMP et d’activité enzymatique de toutes les DfrB et des homologues identifiés, afin de les comparer à ceux de la DfrB1. Pour atteindre ces objectifs, des nouvelles méthodes à haut débit de détermination d’activité ainsi que des tests de concentration minimale inhibitrice (CMI) furent développés. Ces méthodes ont permis de déterminer que les profils de thermostabilité et d’inhibition de plusieurs DfrB et DfrB-H sont comparables aux profils de la DfrB1. De plus, le criblage de dizaines de composés potentiellement inhibiteurs a été effectué afin de poursuivre la recherche d’inhibiteurs spécifiques aux DfrB. En outre, nous signalons 10 nouvelles séquences homologues de DfrB qui confèrent une résistance élevée au TMP et possèdent une activité Dfr. La caractérisation de tous les membres DfrB et les homologues nous permettra d’acquérir une meilleure connaissance de leur mécanisme de résistance, de leur prévalence dans divers environnements et de soutenir notre développement de nouveaux inhibiteurs des DfrB. / The intensive usage of antibiotics has provoked the emergence of antibiotic resistance, causing a worldwide health issue. The antibiotic trimethoprim (TMP) targets the microbial dihydrofolate reductase enzyme (FolA), abrogating the production of an essential precursor in the synthesis of purines and thus preventing bacterial proliferation. However, some bacteria produce an additional dihydrofolate reductase: the highly TMP-resistant DfrB. Currently, ten DfrB family members have been identified, that share high sequence identity (74 – 98 %). DfrB enzymes consist of identical, 78 amino acid-long SH3-like domains, that homotetramerize to form the active enzyme. DfrB share no sequence or structural homology with FolA and no antibiotic has yet been developed to circumvent the TMP resistance caused by DfrB. In order to gain insight into the SH3-like domain of DfrB, homologues (DfrB-H) sharing 10 to 80 % identity with DfrB1 were identified and characterized, which displayed dihydrofolate reductase (Dfr) activity and conferred high TMP resistance. Also, to investigate if dfrB genes are identified in various environments, a metagenomic database search was undertaken to characterize ten new DfrB1 homologue sequences. In 2012, the Pelletier group reported the first specific inhibitor of a DfrB, and several others since. Only DfrB1 has been characterized regarding its inhibition profile as well as its unusual thermostability. Here, semi-automated methods will be developed to compare the inhibition, thermostability, TMP-resistance and enzymatic activity profiles of all DfrB and DfrB homologues to those of DfrB1. To address this objective, new high-throughput activity assays as well as Minimal Inhibitory Concentration (MIC) assays were developed. Using those methods, we determined that thermostability and inhibition profiles of several DfrB and DfrB-H were comparable to those of DfrB1. Also, a screen of several dozen potential inhibitory compounds was performed, to attempt to identify further specific DfrB inhibitors. In addition, we report 10 new DfrB homologues that confer high TMP resistance and possess Dfr activity. The characterization of all DfrB members and DfrB homologues will allow us to acquire greater knowledge on their antimicrobial resistance mechanism, their prevalence in different environments and support our development of new DfrB-specific inhibitors.
7

Rôle de la signalisation par ERK et de la sénescence cellulaire dans la progression du cancer pancréatique

Rowell, Marie-Camille 07 1900 (has links)
Le cancer du pancréas est la quatrième cause de décès par cancer au Canada. Avec des mutations activatrices de KRas présentes dans près de 90% des lésions bénignes et tumeurs, ce cancer arbore une activation de la voie MAPK très tôt dans son développement. Or, peu de littérature existe sur les étapes clés de la progression et sur le rôle précis de cette signalisation dans le passage des lésions bénignes (PanIN) au stade avancé (PDAC). Depuis plusieurs années, notre laboratoire s’intéresse aux kinases ERK1/2, actives en aval de Ras, des acteurs centraux du programme de sénescence cellulaire, soit un programme antitumoral intrinsèque aux cellules. L’hypothèse centrale des présents travaux est donc que les mutations de KRas acquises dès le stade PanIN induisent une sénescence qui agit comme barrière à la progression tumorale, et que l’atténuation du signal de ERK est impliquée dans le contournement de ce mécanisme. La première partie de cette thèse montrera donc les avancées que nous avons faites sur la caractérisation de la progression entre le stade bénin et le stade avancé, de laquelle l’acquisition d’un caractère souche, la transition épithélio-mésenchymateuse et le développement d’une dépendance mitochondriale semblent être des déterminants. Ensuite, nous présenterons nos découvertes sur le rôle des kinases ERK1/2, de la sénescence cellulaire et du stress nucléolaire dans une nouvelle approche visant à restaurer un mécanisme de suppression tumorale inspiré des lésions bénignes et impliquant une altération de la biogenèse ribosomique. Finalement, pour bonifier cette nouvelle stratégie, nous présenterons les résultats d’un criblage CRISPR-Cas9 génome-entier nous ayant permis d’identifier les composantes d’une stratégie « one-two punch » basée sur l’induction de sénescence dans les cellules PDAC combinée à l’inhibition de la Glutathion peroxydase 4 (GPX4), de façon à promouvoir une sénolyse efficace dans ce contexte. Dans leur ensemble, les travaux présentés dans cette thèse montrent un avancement significatif dans la compréhension de la biologie des cancers pancréatiques en identifiant à la fois des vulnérabilités intrinsèques et inductibles afin de générer de nouvelles idées thérapeutiques pour ce cancer hautement fatal. / Pancreatic cancer is the fourth leading cause of death by cancer in Canada. With frequent activating mutations in KRas in up to 90% of benign lesions and tumors, this cancer possesses an early activation of the MAPK pathway. However, key events of its progression from the PanIN stage to the PDAC stage and the precise role of MAPK signaling in it are still poorly understood. For many years, our laboratory has taken interest in the ERK1/2 signaling pathway, activated downstream of oncogenic Ras and a key mediator of cellular senescence. Cellular senescence is considered an intrinsic antitumor mechanism due to its ability to stably halt the cell cycle. The central hypothesis of this work is then that KRas mutations that are acquired at the PanIN stage induce cellular senescence which acts as a barrier against tumor development. Still, this powerful mechanism can be circumvented as cells tend to attenuate the ERK1/2 signaling to promote progression and acquisition of more aggressive features. Thus, the first part of this thesis will present our most recent advances in characterizing the progression events between PanIN and PDAC stages, during which stem cell features acquisition, epithelial-mesenchymal transition and mitochondrial dependency seem to occur. Next, we will present our discoveries regarding the implication of ERK1/2 kinases, cellular senescence and nucleolar stress in a new approach to restore a tumor suppression mechanism inspired by the PanIN stage and based on ribosome biogenesis alteration. Finally, to potentiate this strategy, we will show the results of a genome-wide CRISPR-Cas9 screen that identified the components of a “one-two punch” approach to induce cellular senescence in PDAC cells and to efficiently eliminate them by GPX4 inhibitors-mediated senolysis. Globally, the work presented in this thesis show significant progress in the field of pancreatic cancer, identifying previously unknown vulnerabilities of those cancer cells and paving the way for the development of new therapeutic combinations.
8

Évaluation des inducteurs de l’autophagie comme cible thérapeutique contre le virus respiratoire syncytial

Bourbia, Amel 12 1900 (has links)
Introduction : Le virus respiratoire syncytial (RSV) est associé à des taux élevés de morbidité et de mortalité non seulement chez les jeunes enfants, en particulier les nourrissons et ceux atteints de cardiomyopathie congénitale, mais aussi chez les personnes de tous âges immunodéprimées et chez les personnes âgées. Les options thérapeutiques actuelles se limitent à une prophylaxie par anticorps monoclonaux réservée aux nourrissons à haut risque de maladie grave associée au RSV. Le développement de nouveaux antiviraux est donc urgent. Les antiviraux ciblant les protéines de l'hôte constituent une alternative émergente aux antiviraux classiques ciblant les protéines virales qui présentent des risques de développement de résistances. L'autophagie est un mécanisme cellulaire qui peut favoriser ou limiter la réplication virale. Nos travaux en cours suggèrent que l'autophagie dans les cellules épithéliales des voies respiratoires humaines (AECs) offre une protection antivirale contre RSV. Objectif : L'objectif de cette étude est d'évaluer la capacité de divers molécules induisant l'autophagie (AID) approuvés par la FDA à inhiber la réplication du RSV dans les AECs. Méthodes : Afin de quantifier l'induction de l'autophagie, la réplication du RSV et la viabilité cellulaire à l'aide d'un système d'imagerie à haut-débit, nous avons développé un essai utilisant des cellules A549, une lignée cellulaire modèle de cellules épithéliales respiratoires, la protéine LC3-RFP comme marqueur d’autophagie, un virus RSV recombinant exprimant la protéine GFP, et un marquage avec le SYTOX-Orange et le DAPI pour évaluer la viabilité cellulaire. Résultats et discussion : En utilisant la Torin-1, un AID caractérisé qui agit de manière mTOR -dépendante, nous avons confirmé que notre essai permet de mesurer l’induction de l’autophagie. De plus, nous avons constaté que la Torin-1 diminue significativement la réplication du RSV-GFP de manière dose-dépendante. Conclusion : En résumé, notre étude a permis de mettre en place un système expérimental à haut débit pour la caractérisation de l’effet des AIDs sur l’autophagie et leur impact sur la réplication du RSV. Nos résultats permettent de montrer que l’induction de l’autophagie corrèle avec la diminution de la réplication de RSV. Ces données devront être complétées par l’utilisation d’autres AIDs pour identifier des molécules approuvées par la FDA qui présentent une activité anti-RSV in vitro. / Introduction: Respiratory syncytial virus (RSV) is associated with high rates of morbidity and mortality not only in young children, particularly infants and those with congenital cardiomyopathy, but also in immunocompromised people of all ages and in the elderly. Current treatment options are limited to monoclonal antibody prophylaxis reserved for infants at high risk of serious illness associated with RSV. The development of new antivirals is therefore urgent. Antivirals targeting host proteins are an emerging alternative to conventional antivirals targeting viral proteins that pose risks of resistance development. Autophagy is a cellular mechanism that can promote or limit viral replication. Our ongoing work suggests that autophagy in human airway epithelial cells (AECs) provides antiviral protection against RSV. Objective: The objective of this study is to evaluate the ability of various FDA-approved autophagy-inducing molecules (AIDs) to inhibit RSV replication in AECs. Methods: In order to quantify autophagy induction, RSV replication and cell viability using a high-throughput imaging system, we developed an assay using A549 cells, a cell line model of respiratory epithelial cells, the LC3-RFP protein as an autophagy marker, a recombinant RSV virus expressing the GFP protein, and labeling with SYTOX-Orange and DAPI to assess cell viability. Results and discussion: Using Torin-1, a characterized AID that acts in an mTOR-dependent manner, we confirmed that our assay can measure the induction of autophagy. Furthermore, we found that Torin-1 significantly decreases RSV-GFP replication in a dose-dependent manner. Conclusion: In summary, our study allowed to set up a high-throughput experimental system for the characterization of the effect of AIDs on autophagy and their impact on RSV replication. Our results show that the induction of autophagy correlates with the decrease in RSV replication. These data should be supplemented by the use of other AIDs to identify FDA-approved molecules that exhibit anti-RSV activity in vitro.
9

Un nouveau mécanisme moléculaire de régulation du système ubiquitine-protéasome par séparation de phase liquide-liquide

Uriarte, Maxime 12 1900 (has links)
L'homéostasie cellulaire implique une régulation fine de la production ainsi que de l'élimination des protéines. La dérégulation de cette homéostasie entraîne des effets néfastes touchant de nombreuses voies de signalisation et de métabolisme et pouvant conduire à diverses maladies telles que le cancer ou la neurodégénérescence. De ce fait, la dégradation des protéines est un processus hautement contrôlé effectué par le système ubiquitine-protéasome (UPS) qui permet le ciblage, l’étiquetage et la dégradation des protéines mal repliées, endommagées ou en fin de vie. Le protéasome est un complexe multiprotéique vital présent dans toutes les cellules eucaryotes dont la biogenèse, la fonction de dégradation et la régulation dans le cytoplasme sont bien connues. Cependant, la fonction du protéasome dans le noyau, notamment en réponse au stress, est encore peu comprise. Les cellules ont développé de nombreux mécanismes adaptatifs en réponse à la variation de l'apport en nutriments comme l’augmentation de la dégradation et le recyclage des protéines. Chez l’humain, le protéasome est dégradé dans le cytoplasme par autophagie lors d’une privation de nutriments mais les mécanismes de régulation du protéasome nucléaire en réponse au stress métabolique restent peu connus. Nous avons trouvé que le protéasome 26S et la sous-unité régulatrice PSME3 forment des foyers nucléaires dans différents types cellulaires de mammifère en réponse à une privation en nutriments. Les foyers, nommés SIPAN pour Starvation-Induced Proteasome Assemblies in the Nucleus, ne sont colocalisés avec aucune structure ou corps nucléaires connus. La formation des SIPAN est réversible lors d’une réintégration des nutriments, suggérant une réponse spécifique liée à un stress métabolique. La manipulation de la quantité d’acides aminés intracellulaire a révélé que les acides aminés non-essentiels jouent un rôle important dans la formation et la résolution des SIPAN. Une analyse métabolomique a permis de trouver des voies reliées au métabolisme des nucléotides et des acides aminés qui pourraient fournir des facteurs clés pour la dissipation des foyers du protéasome. Le fort dynamisme des SIPAN, la présence d’événements de fusion et leur instabilité vis-à-vis des conditions cellulaires suggèrent que les SIPAN résultent d’une séparation de phase liquide-liquide (LLPS). De plus, nous avons trouvé que l’ubiquitine conjuguée est présente dans les SIPAN et que l’ubiquitination et la déubiquitination semblent être impliquées dans la formation et la résolution, respectivement. Nous avons ensuite découvert que la perte du récepteur à l’ubiquitine RAD23B empêche la formation des SIPAN. En effet, les domaines de liaison au protéasome UBL et de liaison à l’ubiquitine UBA1/UBA2 sont nécessaires pour la formation des SIPAN. De manière intéressante, la perte de RAD23B ou du complexe régulateur PSME3 retarde l’induction de l’apoptose et promeut la survie cellulaire. Enfin, en utilisant un inducteur de l’apoptose, nous avons observé l’apparition de ces foyers du protéasome dans le noyau des cellules dont certaines caractéristiques sont similaires aux SIPAN. Notre étude aborde une question très importante dans la compréhension des rôles et du dynamisme du protéasome nucléaire, en particulier dans l'adaptation au stress, qui peut réguler le niveau des protéines nucléaires. De façon générale, cela nous aidera à mieux comprendre le rôle du protéasome dans l’homéostasie nucléaire et son implication dans les maladies humaines. / Cellular homeostasis involves specific regulation of the production as well as the elimination of proteins. The deregulation of this equilibrium leads to harmful effects affecting many signaling and metabolic pathways and can lead to various diseases, such as cancer or neurodegeneration. Hence, protein degradation is a highly controlled process performed by the ubiquitin-proteasome system (UPS) that allows targeting, labeling and degradation of misfolded, damaged, or end-of-life proteins. The proteasome is a vital multiprotein complex found in all eukaryotic cells whose biogenesis, degradative function, and regulation in the cytoplasm are well known. However, the function of the proteasome in the nucleus, particularly in response to stress, is still poorly understood. Cells have evolved many adaptive mechanisms in response to varying nutrient supply such as increased protein degradation and recycling. In humans, the proteasome is degraded in the cytoplasm by autophagy during nutrient deprivation, but the regulatory mechanisms of the nuclear proteasome in response to metabolic stress remain poorly understood. We have found that the 26S proteasome and regulatory subunit PSME3 form nuclear foci in different mammalian cell types in response to nutrient deprivation. These foci, called SIPAN for Starvation-Induced Proteasome Assemblies in the Nucleus, do not colocalize with any known nuclear structures or bodies. The formation of SIPAN is reversible upon nutrient replenishment, suggesting a specific response to metabolic stress. Manipulation of the intracellular amino acid pool revealed that non-essential amino acids play important roles in the formation and resolution of SIPAN. A metabolomics study has identified pathways related to nucleotide and amino acid metabolism that may provide key factors for the dissipation of the proteasome foci. The strong dynamism of SIPAN, the presence of fusion events and their instability towards cellular conditions suggest that SIPAN result from liquid-liquid phase separation (LLPS). Additionally, we have found that conjugated ubiquitin is present in SIPAN and that ubiquitination and deubiquitination appear to be involved in their formation and resolution, respectively. We then discovered that the depletion of the ubiquitin receptor RAD23B prevents the formation of SIPAN. Indeed, the UBL proteasome binding domain and UBA1/UBA2 ubiquitin binding domains are required for SIPAN formation. Interestingly, the depletion of RAD23B or the proteasome regulatory particle PSME3 delays the induction of apoptosis and promotes cell survival. Finally, we found that an apoptosis-inducing agent promotes proteasome foci formation in the nucleus of cells, and these organelles share similarities with SIPAN. Our study addresses a very important question in understanding the roles and dynamism of the proteasome in the nucleus, specifically during stress adaptation, which can regulate the level of nuclear proteins. In general, this will help us to better understand the role of the proteasome in nuclear homeostasis and its involvement in human diseases.
10

Processing activity of the miRNA maturation endonucleases Drosha and Dicer toward let-7 substrates

Dadhwal, Gunjan 12 1900 (has links)
La famille des microARN (miARN) let-7 comprend treize membres qui jouent des rôles critiques dans de nombreux processus biologiques, notamment la différenciation et le développement cellulaires. Plus spécifiquement, ils fonctionnent comme des suppresseurs de tumeurs en ciblant plusieurs oncogènes. La dérégulation des niveaux de miARN let-7 a été associée à diverses maladies humaines, y compris des cancers et des troubles neurodégénératifs. Il est bien établi que Drosha et Dicer, appartenant à la famille des RNases III, sont deux enzymes clés de la voie de maturation des miARN, et qu'un traitement défectueux par ces endoribonucléases pourrait affecter l'expression des gènes. Au cours des dix dernières années, plusieurs recherches ont permis d'identifier les caractéristiques structurales de l'ARN et les protéines qui régulent la voie de maturation des miARN. Cependant, les détails moléculaires menant à la régulation des niveaux d’expression des miARN nécessitent des investigations supplémentaires. L'objectif principal de cette thèse est d'étudier l'activité de clivage in vitro des endoribonucléases Drosha et Dicer envers leurs substrats let-7, en se concentrant sur la façon dont diverses caractéristiques de séquence et de structure affectent leurs activités. Tout d'abord, un criblage structural de type SHAPE suivi d'investigations thermodynamiques et cinétiques détaillées pour les treize pré-miARN de la famille let-7 ont été réalisés avec une enzyme Dicer purifiée in vitro. Cette étude a révélé que malgré les différences structurales des membres de la famille let-7, Dicer ne discrimine pas entre ses substrats, y compris les pré-miARN avec une extension de 1-nt et 2-nt à leur extrémité 3'. L'ensemble de ces travaux met en évidence la remarquable promiscuité de Dicer vis-à-vis divers pré-miARN de la famille let-7. Deuxièmement, le mécanisme enzymatique du clivage du pré-let-7a-1 a été examiné. Les résultats de la cinétique de l'état stable, de l'état pré-stable et de l'impulsion-chase sont conformes à l'opinion dominante, soutenue par de récentes structures de cryo-EM, selon laquelle le ou les changements de conformation d'un complexe enzyme-substrat dans une conformation catalytiquement productive sont importants pour l'activité de clivage. Troisièmement, nous avons étudié la séquence et les déterminants structuraux du clivage du pri-let-7 par le complexe microprocesseur (MP) composé de Drosha et de son partenaire obligatoire DGCR8. Sur la base d'études de clivage de plusieurs substrats pri-let-7 avec un complexe MP reconstitué in vitro, il a été constaté que le clivage du pri-let-7g donne des produits multiples. En utilisant des variantes de pri-let-7g, il a été révélé qu'un élément structural conservé de pri-let-7g favorise un clivage improductif, peut-être en raison du clivage de son substrat par la MP dans l'orientation inverse. Cette étude fournit un cadre pour des investigations futures dans l'étude du clivage de pri-let-7g par Drosha et éventuellement l'identification de nouveaux mécanismes de régulation. Dans l'ensemble, nos résultats donnent un aperçu de la façon dont les caractéristiques structurales des pri-miARN et des pré-miARN de la famille let-7 modulent le traitement par Drosha et Dicer et ouvrent la voie à de futures études visant à examiner le rôle des facteurs protéiques dans la régulation de la maturation des miARN let-7. / The let-7 family of microRNAs (miRNAs) comprises of thirteen members that play critical roles in many biological processes, including cell differentiation and development. More specifically, they function as tumor suppressors by targeting several oncogenes. Deregulation in let-7 miRNA levels has been associated with various human diseases, including cancers and neurodegenerative disorders. It is well established that Drosha and Dicer are the two key enzymes of the miRNA maturation pathway, and that faulty processing by these endoribonucleases could affect gene silencing. Thus, it is crucial to better understand how Drosha and Dicer respectively process the primary miRNAs (pri-miRNAs) and precursor miRNAs (pre-miRNAs) to yield mature miRNAs, and how these enzymes are regulated. In the last decade of miRNA research, several investigations have identified RNA structural features and RNA-binding proteins that regulate the miRNA maturation pathway, adding another layer of regulation in this pathway. However, the molecular detail of this regulation requires further investigations. The main goal of this thesis is to investigate the in vitro processing activity of Drosha and Dicer toward their let-7 substrates, focusing on how diverse sequence and structural features affect their activities. First, SHAPE structural probing followed by detailed thermodynamic and kinetic investigations for all thirteen pre-miRNAs of the let-7 family were performed with in vitro purified Dicer. Surprisingly, this study revealed that despite structural differences in the pre-let-7 members, Dicer does not discriminate between these substrates, including pre-miRNAs with a 1 nt and a 2-nt overhang at their 3'-end. Additional binding and cleavage investigations of pre let-7 substrates carrying 3'-end modifications (mono- and oligo-uridylation, mono- and oligo-adenylation) were performed to clarify how these modifications affect Dicer binding and cleavage activities. Together, this work highlights the remarkable substrate promiscuity of Dicer toward diverse pre-miRNAs of the let-7 family. Second, the enzymatic mechanism of pre-let-7 cleavage by Dicer was examined using pre-let-7a-1 as a model substrate. The results from the steady-state, pre-steady state and pulse-chase kinetics are consistent with the prevailing view, supported by recent cryo-EM structures, that the conformational change(s) of an enzyme-substrate complex into a catalytically productive conformation are important for cleavage activity. Third, the sequence and structural determinants of pri-let-7 processing by the Microprocessor (MP) complex composed of Drosha and its obligatory partner DGCR8 were investigated. Based on cleavage studies of several pri-let-7 substrates with an in vitro reconstituted MP complex, it was found that cleavage of pri-let-7g yields multiple products. Using pri-let-7g variants, it was revealed that a conserved structural element of pri-let-7g promotes unproductive cleavage, possibly as a result of the MP cleaving its substrate in the reverse orientation. This study provides the framework for future investigations in studying pri-let-7g processing by Drosha and possibly identifying novel mechanisms of regulation. Overall, our findings provide insights on how the structural features of pri-miRNAs and pre-miRNAs of the let-7 family modulate processing by Drosha and Dicer and pave the way for future studies aimed at examining the role of protein factors in regulating the maturation of let-7 miRNAs.

Page generated in 0.0727 seconds