• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolic labelling of bacterial isoprenoids produced by the methylerythritol phosphate pathway : a starting point towards a new inhibitor / Marquage métabolique des isoprénoïdes bactériens produits par la voie du méthylérythritol phosphate : un point de départ vers un nouvel inhibiteur

Baatarkhuu, Zoljargal 05 September 2017 (has links)
Les isoprénoïdes, présents dans tous les organismes vivants, sont synthétisés selon deux processus: la voie du Mevalonate et la voie Méthylérythritol phosphate (MEP). Cette dernière, absente chez l’humain, est très étudiée car elle représente une cible pour le développement de nouveaux antimicrobiens. Le ME-N3, un analogue du méthylérythritol portant un azoture, a été synthétisé et exploité dans des expériences de marquage métabolique de la voie MEP en utilisant un couplage bioorthogonale suivi d’une analyse par LC/MS. De façon intéressante, nous avons découvert que le MEP-N3, un analogue du MEP, inhibe l'enzyme IspD d’ E. coli (3ème enzyme de la voie MEP). Les études cinétiques ont révélé que le MEP-N3 possède la meilleure activité inhibitrice sur IspD d’ E.coli en comparaison avec les inhibiteurs connus, et que le mécanisme d'inhibition est de type mixte. Une étude détaillée du mécanisme de la réaction catalysée par IspD a été réalisée pour la première fois, en utilisant une analyse cinétique à deux substrats. / Isoprenoids, present in all living organisms, are synthesised according to two routes: the Mevalonate and the Methylerythritol phosphate (MEP) pathways. The MEP pathway, absent in humans, is extensively investigated as it is a target for the development of new antimicrobials. ME-N3 an azide tagged analogue of methylerythritol was synthesised and utilised for metabolic labelling studies of the MEP pathway using bioorthogonal ligation followed by LC-MS analysis. Interestingly, we found that MEP-N3, an analogue of MEP, inhibits E.coli IspD (3rd enzyme of the MEP pathway). Further inhibition kinetic studies revealed that MEP-N3 possesses the highest inhibitory activity on E.coli ispD when compared to known inhibitors. In addition, the mechanism of inhibition of E.coli ispD by MEP-N3 was found to be best described using a mixed type model. Moreover, determination of the IspD reaction mechanism has been carried out for the first time, by virtue of a bisubstrate steady state kinetic analysis.
2

Activité et inhibition d'une famille d'enzymes hautement résistantes au triméthoprime

Lafontaine, Kiana 08 1900 (has links)
L’usage excessif d’antibiotiques a provoqué l’émergence de résistance, constituant un problème sanitaire mondial. L’antibiotique triméthoprime (TMP) inhibe l’enzyme dihydrofolate réductase (FolA) des bactéries, interrompant la production d’un précurseur essentiel dans la synthèse des purines et empêchant ainsi la croissance bactérienne. Cependant, certaines bactéries produisent une seconde dihydrofolate réductase : une DfrB, appartenant à une famille d’enzymes hautement résistantes au TMP. Actuellement, dix membres de la famille DfrB ont été identifiés, qui partagent une identité de séquence élevée (74 – 98 %). Les enzymes DfrB sont constituées de domaines identiques de 78 acides aminés, de type ‘SH3-like’, qui s’homotétramérisent afin de former l’enzyme active. Les DfrB ne partagent aucune homologie de séquence ou de structure avec les FolA et aucun antibiotique n’a encore été développé pour contourner la résistance au TMP causée par les DfrB. Afin de mieux comprendre le domaine SH3-like, des homologues (DfrB-H) partageant 10 à 80 % d’identité avec la DfrB1 ont été identifiés et caractérisés. Ils possèdent une activité dihydrofolate réductase (Dfr) et confèrent de la résistance au TMP. De plus, afin de vérifier si les gènes dfrB se retrouvent dans divers environnements, une recherche dans une base de données métagénomiques a été entreprise, permettant de caractériser 10 nouvelles séquences homologues aux DfrB connues. En 2012, le groupe Pelletier a rapporté le premier inhibiteur spécifique d’une DfrB, et plusieurs autres depuis. Seule la DfrB1 a été caractérisée concernant son profil d’inhibition ainsi que sa thermostabilité inhabituelle. Ici, une méthode semi-automatisée sera développée pour caractériser les profils d’inhibition, de thermostabilité, de résistance au TMP et d’activité enzymatique de toutes les DfrB et des homologues identifiés, afin de les comparer à ceux de la DfrB1. Pour atteindre ces objectifs, des nouvelles méthodes à haut débit de détermination d’activité ainsi que des tests de concentration minimale inhibitrice (CMI) furent développés. Ces méthodes ont permis de déterminer que les profils de thermostabilité et d’inhibition de plusieurs DfrB et DfrB-H sont comparables aux profils de la DfrB1. De plus, le criblage de dizaines de composés potentiellement inhibiteurs a été effectué afin de poursuivre la recherche d’inhibiteurs spécifiques aux DfrB. En outre, nous signalons 10 nouvelles séquences homologues de DfrB qui confèrent une résistance élevée au TMP et possèdent une activité Dfr. La caractérisation de tous les membres DfrB et les homologues nous permettra d’acquérir une meilleure connaissance de leur mécanisme de résistance, de leur prévalence dans divers environnements et de soutenir notre développement de nouveaux inhibiteurs des DfrB. / The intensive usage of antibiotics has provoked the emergence of antibiotic resistance, causing a worldwide health issue. The antibiotic trimethoprim (TMP) targets the microbial dihydrofolate reductase enzyme (FolA), abrogating the production of an essential precursor in the synthesis of purines and thus preventing bacterial proliferation. However, some bacteria produce an additional dihydrofolate reductase: the highly TMP-resistant DfrB. Currently, ten DfrB family members have been identified, that share high sequence identity (74 – 98 %). DfrB enzymes consist of identical, 78 amino acid-long SH3-like domains, that homotetramerize to form the active enzyme. DfrB share no sequence or structural homology with FolA and no antibiotic has yet been developed to circumvent the TMP resistance caused by DfrB. In order to gain insight into the SH3-like domain of DfrB, homologues (DfrB-H) sharing 10 to 80 % identity with DfrB1 were identified and characterized, which displayed dihydrofolate reductase (Dfr) activity and conferred high TMP resistance. Also, to investigate if dfrB genes are identified in various environments, a metagenomic database search was undertaken to characterize ten new DfrB1 homologue sequences. In 2012, the Pelletier group reported the first specific inhibitor of a DfrB, and several others since. Only DfrB1 has been characterized regarding its inhibition profile as well as its unusual thermostability. Here, semi-automated methods will be developed to compare the inhibition, thermostability, TMP-resistance and enzymatic activity profiles of all DfrB and DfrB homologues to those of DfrB1. To address this objective, new high-throughput activity assays as well as Minimal Inhibitory Concentration (MIC) assays were developed. Using those methods, we determined that thermostability and inhibition profiles of several DfrB and DfrB-H were comparable to those of DfrB1. Also, a screen of several dozen potential inhibitory compounds was performed, to attempt to identify further specific DfrB inhibitors. In addition, we report 10 new DfrB homologues that confer high TMP resistance and possess Dfr activity. The characterization of all DfrB members and DfrB homologues will allow us to acquire greater knowledge on their antimicrobial resistance mechanism, their prevalence in different environments and support our development of new DfrB-specific inhibitors.
3

Découverte d'inhibiteurs de la dihydrofolate réductase R67 impliquée dans la résistance au triméthoprime

Bastien, Dominic 08 1900 (has links)
No description available.
4

Découverte d'inhibiteurs de la dihydrofolate réductase R67 impliquée dans la résistance au triméthoprime.

Bastien, Dominic 08 1900 (has links)
Le triméthoprime (TMP) est un antibiotique communément utilisé depuis les années 60. Le TMP est un inhibiteur de la dihydrofolate réductase (DHFR) bactérienne chromosomale. Cette enzyme est responsable de la réduction du dihydrofolate (DHF) en tétrahydrofolate (THF) chez les bactéries, qui lui, est essentiel à la synthèse des purines et ainsi, à la prolifération cellulaire. La résistance bactérienne au TMP est documentée depuis plus de 30 ans. Une des causes de cette résistance provient du fait que certaines souches bactériennes expriment une DHFR plasmidique, la DHFR R67. La DHFR R67 n'est pas affectée par le TMP, et peut ainsi remplacer la DHFR chromosomale lorsque celle-ci est inhibée par le TMP. À ce jour, aucun inhibiteur spécifique de la DHFR R67 est connu. En découvrant des inhibiteurs contre la DHFR R67, il serait possible de lever la résistance au TMP que la DHFR R67 confère aux bactéries. Afin de découvrir des inhibiteurs de DHFR R67, les approches de design à base de fragments et de criblage virtuel ont été choisies. L'approche de design à base de fragments a permis d'identifier sept composés simples et de faible poids moléculaire (fragments) inhibant faiblement la DHFR R67. À partir de ces fragments, des composés plus complexes et symétriques, inhibant la DHFR R67 dans l'ordre du micromolaire, ont été élaborés. Des études cinétiques ont montré que ces inhibiteurs sont compétitifs et qu'au moins deux molécules se lient simultanément dans le site actif de la DHFR R67. L'étude d'analogues des inhibiteurs micromolaires de la DHFR R67 a permis de déterminer que la présence de groupements carboxylate, benzimidazole et que la longueur des molécules influencent la puissance des inhibiteurs. Une étude par arrimage moléculaire, appuyée par les résultats in vitro, a permis d'élaborer un modèle qui suggère que les résidus Lys32, Gln67 et Ile68 seraient impliqués dans la liaison avec les inhibiteurs. Le criblage virtuel de la librairie de 80 000 composés de Maybridge avec le logiciel Moldock, et les essais d'inhibition in vitro des meilleurs candidats, a permis d'identifier quatre inhibiteurs micromolaires appartenant à des familles distinctes des composés précédemment identifiés. Un second criblage virtuel, d'une banque de 6 millions de composés, a permis d'identifier trois inhibiteurs micromolaires toujours distincts. Ces résultats offrent la base à partir de laquelle il sera possible de développer iv des composés plus efficaces et possédant des propriétés phamacologiquement acceptables dans le but de développer un antibiotique pouvant lever la résistance au TMP conféré par la DHFR R67. / Trimethoprim (TMP) is a common antibiotic which is used since the 60's. TMP is an inhibitor of the bacterial chromosomal dihydrofolate reductase (DHFR). This enzyme catalyses the reduction of the dihydrofolate (DHF) to tetrahydrofolate (THF) which is essential to the biosynthesis of purines thus to cellular proliferation. Bacterial TMP resistance is documented since about 30 years. One of the cause of this resistance comes from the fact that certain bacteria express a plasmidic DHFR, the R67 DHFR, which confers TMP resistance. The R67 DHFR is not inhibited by TMP and can replace the chromosomal DHFR when the latter is inhibited by TMP. The discovery of R67 DHFR inhibitors would allow to break the trimethoprim resistance granted by R67 DHFR. In order to discover R67 DHFR inhibitors, fragment based design and virtual screening approaches were selected. By fragment based design, seven simple compounds with a low molecular mass which inhibited weakly R67 DHFR (fragments) were identified. From these fragments, more complex and symmetrical compounds inhibiting R67 DHFR in the micromolar range were identified. Kinetic studies showed these inhibitors were competitive and at least two molecules bind simultaneously to the active site of the R67 DHFR. Test of the micromolar inhibitors analog showed that the presence of carboxylate, benzimidazole and the length of the molecule all have an effect on the potency of the inhibitors. Molecular docking of the inhibitors, supported by in vitro data, were used to develop a model which suggest that residue like Lys32, Gln67 and Ile68 would be involved in the binding of the inhibitors to the R67 DHFR. Virtual screening of the 80 000 compound Maybridge library with Moldock software, followed by in vitro test of the best candidate, identified four micromolar inhibitors which are chemically distinct from the inhibitor beforehand identified. A second virtual screening of a 6 million compounds bank identified three micromolar inhibitors which are also distinct from the inhibitor beforehand identified. vi These results offer a basis which will allow further development of more potent inhibitors with more acceptable pharmacologic properties in order to develop an antibiotic which would break the TMP resistance granted by the R67 DHFR.

Page generated in 0.1167 seconds