• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxygen Transport Measured by Isotope Tracing through Solid Oxides

Wood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
2

Oxygen Transport Measured by Isotope Tracing through Solid Oxides

Wood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
3

Process Intensification Techniques for Continuous Spherical Crystallization in an Oscillatory Baffled Crystallizer with Online Process Monitoring

Joseph A Oliva (6588797) 15 May 2019 (has links)
<div> <p>Guided by the continuous manufacturing paradigm shift in the pharmaceutical industry, the proposed thesis focuses on the implementation of an integrated continuous crystallization platform, the oscillatory baffled crystallizer (OBC), with real time process monitoring. First, by defining an appropriate operating regime with residence time distribution (RTD) measurements, a system can be defined that allows for plug flow operation while also maintaining solid suspension in a two-phase system. The aim of modern crystallization processes, narrow crystal size distributions (CSDs), is a direct result of narrow RTDs. Using a USB microscope camera and principal component analysis (PCA) in pulse tracer experiments, a novel non-contact RTD measurement method was developed using methylene blue. After defining an operating region, this work focuses on a specific process intensification technique, namely spherical crystallization.</p> <p>Used mainly to tailor the size of a final dosage form, spherical crystallization removes the need for downstream size-control based unit operations (grinding, milling, and granulation), while maintaining drug efficacy by tailoring the size of the primary crystals in the agglomerate. The approach for generating spherical agglomerates is evaluated for both small and large molecules, as there are major distinctions in process kinetics and mechanisms. To monitor the spherical agglomeration process, a variety of Process Analytical Technology (PAT) tools were used and the data was implemented for scale-up applications.</p> <p>Lastly, a compartmental model was designed based on the experimental RTD data with the intention of predicting OBC mixing and scale-up dynamics. Together, with validation from both the DN6 and DN15 systems, a scale independent equation was developed to predict system dispersion at different mixing conditions. Although it accurately predicts the behavior of these two OBC systems, additional OBC systems of different scale, but similar geometry should be tested for validation purposes.</p> </div> <br>

Page generated in 0.1144 seconds