• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 11
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 20
  • 17
  • 13
  • 12
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Resina epóxi reforçada com tecido de carbono não dobrável por processo RTM /

Cioffi, Maria Odila Hilário. January 2011 (has links)
Banca: Herman Jacobus Cornelis Voorwald / Banca: Maysa Furlan / Banca: Sergio Frascino Muller de Almeida / Banca: Durval Rodrigues Junior / Banca: Paulo Roberto Mel / Resumo: Com o objetivo de ganhar competitividade no mercado internacional e contribuir para o desenvolvimento tecnológico no país, o presente trabalho apresenta a técnica de processamento de moldagem por transferência de resina (RTM), utilizada na fabricação de materiais compósitos estruturais e ainda pouco estudada no Brasil. Os compósitos processados por essa técnica apresentam maior fração volumétrica de fibras, melhor acabamento superficial e pouca ou nenhuma necessidade de acabamento do componente produzido. Este trabalho compreende a caracterização de compósitos produzidos com resina epóxi monocomponente RTM6 e o tecido não dobrável de fibra de carbono. Os compósitos produzidos pela Hexcel Composites foram analisados pela técnica de ultrassom C-Scan e os resultados mostraram que os laminados processados estão homogêneos quanto à impregnação. Ensaios mecânicos mostram que os laminados com tecido apresentam características comparáveis à dos compósitos produzidos em autoclave com maiores porcentagens de reforço. Em fadiga, os laminados apresentaram um alto e curto intervalo, com tensões próximas à de tração. Quanto ao comportamento térmico observou-se melhora nas propriedades com a adição do reforço de fibras de carbono, que promoveram o aumento da temperatura de transição vítrea (Tg). Quanto ao comportamento viscoelástico, foi observado a influencia da temperatura e freqüência no material. Considerando as propriedades mecânicas e térmicas, ambos os compósitos foram classificados como adequados à aplicação proposta. / Abstract: Aiming at gaining competitiveness on international market and contribute with technological development in the country, this work presents a processing technique of resin transfer molding (RTM), used to manufacture structural composites that Brazilian researches have yet few background. Composites processed by this method have a higher volume fraction of fibers, better surface finish, and requires little or none surface finish of the final component. This work includes the characterization of composites made with RTM6 monocomponent epoxy resin and carbon non-crimp fabric (NCF). Composites produced by Hexcel Composites were analyzed by C-scan ultrasound technique, which showed a homogeneous impregnation of the processed panels. Mechanical tests showed that RTM composites properties are comparable to those of autoclaving composites with higher fiber volume fraction. In fatigue, composites showed high and short interval, close to ultimate tensile strength (UTS), with an interval between 60-75% of UTS. Regarding the thermal behavior, it was observed an improvement in properties with the addition of carbon fiber reinforcement, which caused an increase in Tg. In regard to the viscoelastic behavior, it was observed the temperature and frequency influence on the material. Considering these mechanical and thermal properties, both composites are considered suitable for the application proposal.
12

Analysis of Wetting, Flow and End-use Properties of Resin Transfer Molded Nanoreinforced Epoxy-glass Fiber Hybrid Composites

Ertekin, Ayca 12 May 2008 (has links)
No description available.
13

Vacuum-Assisted Resin Transfer Molding (VARTM) Model Development, Verification, and Process Analysis

Sayre, Jay Randall 24 April 2000 (has links)
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment. / Ph. D.
14

Vacuum Assisted Resin Transfer Molding of Foam Sandwich Composite Materials: Process Development and Model Verification

McGrane, Rebecca Ann 17 July 2002 (has links)
Vacuum assisted resin transfer molding (VARTM) is a low cost resin infusion process being developed for the manufacture of composite structures. VARTM is being evaluated for the manufacture of primary aircraft structures, including foam sandwich composite materials. One of the benefits of VARTM is the ability to resin infiltrate large or complex shaped components. However, trial and error process development of these types of composite structures can prove costly and ineffective. Therefore, process modeling of the associated flow details and infiltration times can aide in manufacturing design and optimization. The purpose of this research was to develop a process using VARTM to resin infiltrate stitched and unstitched dry carbon fiber preforms with polymethacrylimide foam cores to produce composite sandwich structures. The infiltration process was then used to experimentally verify a three-dimensional finite element model for VARTM injection of stitched sandwich structures. Using the processes developed for the resin infiltration of stitched foam core preforms, visualization experiments were performed to verify the finite element model. The flow front progression as a function of time and the total infiltration time were recorded and compared with model predictions. Four preform configurations were examined in which foam thickness and stitch row spacing were varied. For the preform with 12.7 mm thick foam core and 12.7 mm stitch row spacing, model prediction and experimental data agreed within 5%. The 12.7 mm thick foam core preform with 6.35 mm row spacing experimental and model predicted data agreed within 8%. However, for the 12.7 mm thick foam core preform with 25.4 mm row spacing, the model overpredicted infiltration times by more 20%. The final case was the 25.4 mm thick foam core preform with 12.7 mm row spacing. In this case, the model overpredicted infiltration times by more than 50%. This indicates that the model did not accurately describe flow through the needle perforations in the foam core and could be addressed by changing the mesh elements connecting the two face sheets. / Master of Science
15

Étude de la mise en oeuvre de composites thermostables cyanate-ester pour pièces structurales aéronautiques tièdes / Study of thermostable cyanate-ester composite for warm aircraft structural parts

Zemni, Lilia 14 March 2019 (has links)
Les pièces situées dans des zones chaudes/tièdes (300-400°C) de l'avion sont actuellement en titane (mât moteur) ou en composite à matrice époxy (plenum). Comment pourrait-on diminuer la masse de ces pièces tout en évitant leur dégradation à hautes températures de fonctionnement ? Le projet TACT (Technologie pour Aérostructures composites Tièdes), porté par Nimitech Innovation® (Groupe LAUAK), propose une solution innovante consistant à mettre en oeuvre par voie RTM des pièces structurales tièdes à base de renfort en fibres de carbone (FC) et de matrice Cyanate ester (CE). Le choix de la matrice thermodurcissable CE est justifié par son caractère thermostable, c'est-à-dire sa capacité d'opérer en continu à de hautes températures de fonctionnement (avec une température de transition vitreuse Tg>300°C). Par ailleurs, elle possède la facilité de mise en oeuvre des époxydes du fait qu'elle s'adapte généralement bien aux paramètres du procédé RTM. Toutefois, l'exothermie élevée de la matrice CE lors de la réticulation implique un gradient de température dans la pièce composite et peut ainsi engendrer des problèmes de surchauffe. Les travaux scientifiques menés dans le cadre de cette thèse se focalisent sur la problématique de surchauffe de la résine pendant le processus de polymérisation très exothermique dans le moule RTM. L'objectif serait ainsi de maîtriser le cycle de cuisson du composite afin d'éviter tout problème d'emballement ou de dégradation pendant la réticulation de la matrice. Dès lors, la thèse s'organise de la manière suivante : dans un premier temps, le comportement thermocinétique de la matrice CE (pure et catalysée) est analysé pendant l'étape de réticulation, et ceci dans l'optique de contribuer à l'optimisation de cycle de cuisson lors de la mise en oeuvre du composite FC/CE par procédé RTM. Ensuite, les propriétés thermiques (capacité calorifique, conductivité, diffusivité) en fonction du degré d'avancement de la résine CE sont menés afin d'évaluer le gradient thermique régi par l'équation de la chaleur permettant de maîtriser la cuisson de la résine dans l'épaisseur. Par ailleurs, la vitrification de la matrice CE est étudiée par le suivi de la température de transition vitreuse Tg en fonction de la température et du taux d'avancement à l'aide de différents techniques de mesure (DSC, DMA, TMA). Enfin, une modélisation de la vitrification à l'aide du modèle Di-Benedetto permettra l'estimation de la température de la transition vitreuse Tg ∞ pour le réseau tridimentionnel entièrement réticulé. / Aeronautical parts which operate in high temperature area (300-400°C) are currently made of titanium (aircraft pylon) or composite materials based on epoxy matrix (plenum). In which extent the weight of these pieces could be reduced as well as avoiding their degradation when operating at these working temperature ranges? TACT project (Technologie pour Aérostructures composites Tièdes), overseen by Nimitech Innovation® (Groupe LAUAK), suggests an innovative solution based on the development of high performance composites parts reinforced by carbon fibers (CF) and cyanate ester matrix (CE) through RTM process. The CE resin belongs to the class of high-performance thermosetting polymers and is mainly chosen in this project due to its thermal stability when operating at high temperatures (with a glass transition Tg>300°C), as well as epoxy-like processability. However, the cross-linking reaction exhibits highly exothermic process, resulting in non-linear increase in internal temperature, which may cause a temperature overshoot. The scientific work carried out within this thesis focuses on the problem of overheating of the resin during the highly exothermic polymerization process in the RTM mold. The objective would thus be to control the curing cycle of the composite in order to avoid problems of runaway or degradation during the crosslinking of the matrix. Hence, the thesis is organized as follows: firstly, thermokinetic behavior of CE resin is analyzed during the crosslinking process in order to optimize the curing cycle. Secondly, thermal properties (heat capacity, conductivity, diffusivity) are identified as a function of the conversion degree in order to evaluate the thermal gradient covered by the heat equation making it possible to control the curing along the thickness of the composite. Moreover, the vitrification of the cyanate ester matrix is studied by monitoring the glass transition temperature Tg as a function of the temperature and conversion degree using different methods (DSC, DMA, TMA). Finally, Di-Benedetto model, a vitrification model, is chosen in order to identify the glass transition temperature Tg∞ of a full crosslinked resin.
16

Mise en œuvre, instrumentation, validation et modélisation d'un système d'injection RTM pour la fabrication de structures composites de hautes performances

Waris, Marc 24 December 2012 (has links) (PDF)
Les matériaux composites ont connu ces dernières années une forte croissance, croissance aujourd'hui renforcée par les nouvelles normes européenne visant à diminuer les émissions CO2 d'ici 2020. La réalisation de pièces complexes peut poser de nombreuses problématiques de fabrication comme la formation de zones sèches, ou la création de distorsions géométriques. Les origines de ces problématiques sont souvent liées à un manque de connaissance et de maîtrise des phases d'imprégnation des renforts et de cuisson du matériau. L'amélioration de la robustesse des procédés nécessite d'avoir une connaissance fine des phénomènes physiques qui ont lieu lors de l'élaboration. Dans cette perspective, les procédés d'élaboration de matériaux composites ont été étudiés à travers la mise en place d'un démonstrateur de laboratoire dans le cadre du projet LCM Smart. Ce pilote d'injection a permis de valider des solutions d'instrumentation, à partir de capteurs innovants (OFS) développés en partenariat avec le laboratoire d'optique Hubert Curien.L'application de cette instrumentation dans le cadre du suivi du procédé RTM a démontré les capacités des OFS pour le suivi des caractéristiques physiques de la pièce (le front d'écoulement, la température, les déformations résiduelles et le degré de cuisson). La comparaison des caractéristiques mesurées avec des simulations numériques effectuées en collaboration avec ESI, a montré une bonne corrélation.Enfin, l'instrumentation a permis de mettre en évidence l'intérêt d'un outillage composite en HexTool pour la réduction des contraintes résiduelles liées à l'interaction outil/pièce.
17

Analyse expérimentale et numérique de la fabrication de pièces composites par le procédé RTM / Experimental and numerical study of the manufacturing of composite parts using the RTM process

Agogué, Romain 17 February 2011 (has links)
Cette thèse s’intéresse à la fabrication de pièces composites par le procédé Resin Transfert Molding (ou RTM), appliquée à des tubes de protection thermiques. Plus particulièrement, cette thèse vise à démontrer la faisabilité d’utiliser ce procédé pour la fabrication cette pièce complexe. La phase d’imprégnation de préformes sèches est plus particulièrement étudiée. Après mise en oeuvre, cette pièce peut présenter des défauts tels que de la porosité ou des déplacements de plis constituant la préforme. L’objectif de cette thèse est donc de comprendre l’origine de ces défauts et de minimiser voire de d’empêcher leur apparition. Pour cela, une démarche expérimentale a été mise en place. Celle ci comprend la réalisation d’un pilote de laboratoire permettant d’appliquer différentes conditions d’imprégnation aux préformes considérées. La perméabilité des renforts considérés a aussi été évaluée à différentes échelles grâce à l’utilisation de moyen dédiés à l’échelle macroscopique (banc de perméabilité planaire et transverse), et grâce à l’utilisation d’un code de calcul se basant sur des images de tomographie synchrotron à l’échelle microscopique. Enfin, une analyse de la qualité des prototypes réalisés a été menée en suivant des procédures mises en place lors de ce projet et les résultats analysés et mis en relation avec les conditions de mise en oeuvre. Cette approche expérimentale est couplée aux simulations numériques de la phase d’imprégnation que nous avons aussi mise en oeuvre au cours de cette thèse. Par l’utilisation combinée de la simulation numérique et des essais expérimentaux, nous avons défini des critères estimant le risque d’apparition des défauts. Ces critères ont montré leur efficacité sur les solutions innovantes que nous avons proposées puisque répondant aux exigences du cahier des charges industriel. / This work concerns the manufacturing of composite parts using the Resin Transfer Molding (RTM) process. A major goal of this study is to test the feasibility of using this process to manufacture a thick tubular part with a complex shape. This study concerns the different stages of the process with an important focus on the injection step of dry preforms. The goal of this thesis is to understand the generation of manufacturing defect (mainly porosity and preform deformation) that possibly takes place during the injection step to avoid them. An experimental procedure is proposed. An experimental setup was developed to study the influence of the different process parameters on the quality of the composite parts. The determination of the longitudinal and through the thickness permeabilities was conducted experimentally on sheared and un-sheared samples. An alternative technique to estimate the permeability is presented based on simulation software using X-ray tomography images at the microscale. At last, a quality control procedure was developed and applied to the tubes manufactured within this project. This experimental work was compared to numerical simulations of the injection stage. Using both numerical simulations and experiments, criteria on process and material parameters to predict the quality of the tailored parts are presented. Those criteria are successfully compared to experimental data and were applied to design innovative injection solutions that meet industrial specifications.
18

Void Modeling in Resin Infusion

Brandley, Mark Wesley 01 June 2015 (has links) (PDF)
Resin infusion of composite parts has continually been reaching to achieve laminate quality equal to, or exceeding, the quality produced with prepreg in an autoclave. In order for this to occur, developers must understand the key process variables that go in to producing a laminate with minimal void content. The purpose of this research is to continue efforts in understanding 1) the effect of process conditions on the resultant void content, with a focus on resin infusion flow rate, 2) applying statistical metrics to the formation, location and size of voids formed, and 3) correlate these metrics with the local mechanical properties of the composite laminate. The variation in dispersion and formation of micro-voids and macro-voids varied greatly between the rates of flow the infusion occurred, especially in the non-crimp carbon fiber samples. Higher flow rates led to lower volumes of micro-voids in the beginning section of the carbon fiber laminates with macro-voids being introduced approximately half-way through infusion. This was determined to have occurred decreasing pressure gradient as the flow front moved away from the inlet. This variation in void content per location on the laminate was more evident in the carbon fiber samples than the fiberglass samples. Micro-voids follow void formation modeling especially when coupled with a pressure threshold model. Macro-void formation was also demonstrated to correlate strongly to void formation models when united with void mobility theories and pressure thresholds. There is a quick decrease in mechanical properties after the first 1-2% of voids signaling strength is mostly sensitive to the first 0-2% void content. A slight decrease in SBS was noticed in fiberglass laminates, A-F as v0 increased but not as drastically as represented in the NCF laminates, G and H. The lower clarity in the exponential trend could be due to the lack of samples with v0 greater than 0% but less than 1%. Strength is not well correlated to void content above 2% and could possibly be related to void morphololgy.
19

Verification of a Three-Dimensional Resin Film Infusion Proecss Simulation Model

Caba, Aaron C. Jr. 05 March 1998 (has links)
This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20 percent of measured times. The predicted pressures were approximately 50 percent of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two `T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4 to 23 percent. / Master of Science
20

Processing of toughened cyanate ester matrix composites

Rau, Anand V. 06 June 2008 (has links)
This investigation explored the feasibility of recently developed toughened cyanate ester networks as candidate materials for high performance composite matrix applications. The resin investigated was a Bisphenol-A cyanate ester toughened with hydroxy functionalized phenolphthalein based amorphous poly(arylene ether sulfone). The thermoplastic modified toughened networks exhibited improvement in the fracture toughness over the base cyanate ester networks without significant reductions in mechanical properties or glass transition temperature. Void free, unidirectional carbon fiber prepreg was successfully manufactured with the toughened cyanate resin using a solventless hot-melt technique. The resin mass fraction of the prepregs was between 31 and 35%. The carbon fiber, toughened cyanate ester prepreg was fabricated into composite panels for mechanical and physical testing. The cure cycle used to manufacture the composite laminates was developed with the aid of a process simulation model developed by Loos and Springer. In order to accurately simulate the resin curing and flow processes, the cure reaction kinetics and melt viscosity was characterized as a function of temperature and degree of cure and input into the simulation model. The model generated cure cycle was used in the manufacture 8-ply unidirectional and 16-ply quasi-isotropic composite laminates. The manufactured laminates were well consolidated to the specified fiber volume fraction between 59 and 60%. Photomicrographs showed that the laminates are void free, the fiber and resin distribution is uniform and fiber wet-out is very good. Mechanical tests were performed to measure the impact damage resistance and shear properties of the toughened cyanate ester resin composites. The results show improvements in impact damage resistance compared with the commonly used hot-melt epoxy resin composites. The influence of processing on performance was observed from the results of shear tests. Carbon fabric composite panels were manufactured by liquid molding processes (resin transfer molding and resin film infusion), with a series of four toughened cyanate ester resins generated by varying the concentration and the molecular weight of the toughener. The panels were subjected to physical, damage tolerance, and fracture toughness tests. The results of physical testing indicate consistently uniform quality, and the void content was found to be less than 2%. The toughened cyanate ester composites exhibited significantly improved impact damage resistance and tolerance compared with hot-melt epoxy systems. Marked increase in the mode II fracture toughness were observed with an increase in the concentration and the molecular weight of the toughener. / Ph. D.

Page generated in 0.2184 seconds