• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Successive Approximation Register Analog-to-digital Converter For Low Cost Microbolometers

Mahsereci, Yigit Uygar 01 February 2012 (has links) (PDF)
Commercialization of infrared (IR) vision is of vital importance for many applications, such as automobile and health care. The main obstacle in front of the further spread of this technology is the high price. The cost reduction is achieved by placing on-chip electronics and diminishing the camera size, where one of the important components is the analog-to-digital converter (ADC). This thesis reports the design of a successive approximation register (SAR) ADC for low-cost microbolometers and its test electronics. Imaging ADCs are optimized only for the specific application in order to achieve the lowest power, yet the highest performance. The successive approximation architecture is chosen, due to its low-power, small-area nature, high resolution potential, and the achievable speed, as the ADC needs to support a 160x120 imager at a frame rate of 25 frames/sec (fps). The resolution of the ADC is 14 bit at a sampling rate of 700 Ksample/sec (Ksps). The noise level is at the order of 1.3 LSBs. The true resolution of the ADC is set to be higher than the need of the current low-cost microbolometers, so that it is not the limiting factor for the overall noise specifications. The design is made using a 0.18&micro / m CMOS process, for easy porting of design to the next generation low-cost microbolometers. An optional dual buffer approach is used for improved linearity, a modified, resistive digital-to-analog converter (DAC) is used for enhanced digital correction, and a highly configurable digital controller is designed for on-silicon modification of the device. Also, a secondary 16-bit high performance ADC with the same topology is designed in this thesis. The target of the high resolution ADC is low speed sensors, such as temperature sensors or very small array sizes of infrared sensors. Both of the SAR ADCs are designed without switched capacitor circuits, the operation speed can be minimized as low as DC if an extremely low power operation is required. A compact test setup is designed and implemented for the ADC. It consists of a custom designed proximity card, an FPGA card, and a PC. The proximity card is designed for high resolution ADC testing and includes all analog utilities such as voltage references, voltage regulators, digital buffers, high resolution DACs for reference generation, voltage buffers, and a very high resolution &Delta / -&Sigma / DAC for input voltage generation. The proximity card is fabricated and supports automated tests, because many components surrounding the ADC are digitally controllable. The FPGA card is selected as a commercially available card with USB control. The full chip functionalities and performances of both ADCs are simulated. The complete layouts of both versions are finished and submitted to the foundry. The ADC prototypes consist of more than 7500 transistors including the digital circuitry. The power dissipation of the 16-bit ADC is around 10mW, where the 14-bit device consumes 30mW. Each of the dies is 1mm x 5mm, whereas the active circuits occupy around 0.5mm x 1.5mm silicon area. These chips are the first steps in METU for the realization of the digital-in digital-out low cost microbolometers and low cost sensors.
2

Linearization of Resistive Digital-to-Analog Converter for RF-Applications Using Compensator and Digital Predistortion / Kompensering av och digital fördistorsion i en digital-analogomvandlare för RF-tillämpningar

Eklund, Henrik January 2021 (has links)
High-speed digital-to-analog converters are critical components in many radiofrequency (RF) applications. The resistive DAC (RDAC) architecture is suitable for high-speed implementation in extremely scaled digital circuit nodes. An RDAC core can be implemented as a resistance network and a digital block, consisting of inverters as drivers to the resistive network. One disadvantage of the architecture is the input code-dependent supply current. Combined with a non-zero supply network impedance, the code-dependent current will introduce non-linearity in the output voltage. One way to circumvent the problem is to use a high-performance voltage regulator, which counteracts the voltage variation in the impedance in the RDAC supply network. In this thesis work, two alternative solutions are investigated; Compensation with another signal-dependent impedance in parallel with the RDAC core to reduce the impedance variations and a digital predistorter (DPD) which corrects the non-linearities of RDAC output voltage. The investigated techniques can be used for improving the linearity of an RDAC in certain cases. The current compensation technique works best at low frequencies, while the DPD can be used for all frequencies to relax requirements on routing resistance or voltage regulation design.

Page generated in 0.133 seconds