• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 8
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 29
  • 28
  • 26
  • 25
  • 25
  • 23
  • 20
  • 12
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-binary Distributed Arithmetic Coding

Ziyang, Wang January 2015 (has links)
Distributed source coding (DSC) is a fundamental concept in information theory. It refers to distributed compression of correlated but geographically separated sources. With the development of wireless sensor networks, DSC has attracted great research interest in the recent years [26]. Although many channel code based DSC schemes have been developed (e.g., those based on turbo codes [11]and LDPC codes [20]), this thesis focuses on the arithmetic coding based approaches, namely, Distributed Arithmetic Coding (DAC) due to its simplicity in encoding [8]. To date, most of the DAC approaches that have been proposed deal with binary sources and can not handle non-binary cases. Little research has been done to extend DAC for non-binary sources. This work aims at developing efficient DAC techniques for the compression of non-binary sources. The key idea of DAC is representing the source symbols by overlapping intervals, as opposed to the case of conventional arithmetic coding where the intervals representing the symbols do not overlap. However the design of the overlapping intervals has been completely of heuristic nature to date. As such, the first part of this work is a thorough study of various interval-overlapping rules in binary DAC so as to understand how these rules impact the performance of DAC. The insight acquired in this study is used in the second part of this work, where two DAC algorithms are proposed to compress non-binary non-uniform sources. The first algorithm applies a designed overlap structure in DAC process, while the second converts a non-binary sequence into a binary sequence by Huffman Coding and encoding the result in binary DAC. Simulation studies are performed to demonstrate the efficiencies of the two proposed algorithms in a variety of source parameter settings.
2

A 10-bit 250-MSample/sec Digital to Analog Converter

Wu, Chih-wei 28 August 2006 (has links)
The goal of this research is to design a low power, high speed, 10-bit, 250 MHz digital-to-analog converter. For high speed application, the DAC is implemented in thermometer-code based segmented DAC. An optimal switching scheme is used in this design. The switching scheme can compensate the gradient error in thermometer-code DAC arrays.This DAC is implemented in a 0.18£gm 1P6M mixed-signal CMOS process provided by TSMC.
3

Design of a 10-bit 1.2 GS/s Digital-to-Analog Converter in 90 nm CMOS

Moody, Tyler J. 20 August 2015 (has links)
No description available.
4

Design and implementation on high-order mismatch-shaped multibit delta-sigma d/a converters

You, Li, 1991 18 September 2014 (has links)
As the rapid evolution in semiconductor technology, transistors’ feature size has reached to 22nm and below, which brings great impact to analog and mixed-signal circuits. As the significant bridge connecting the analog world and digital system, data converter suffers from nonlinearity resulting from mismatch among its unit components. The smaller transistors are, the larger relative mismatch among them becomes. However, using larger transistors leads to more area cost and power consumption. Therefore, researchers have been working hard on how to alleviate the mismatch issue. In recent years, Dynamic Element Matching (DEM) becomes a popular approach that can significantly improve linearity, especially Spurious-free Dynamic Range (SFDR), of a data converter system. The basic idea of DEM is to shuffle the usage pattern of unit elements so that the mismatch error is no longer correlated to the input signal. Thus, DAC’s linearity will be improved. Generally, DEM Nyquist-rate DAC does mismatch scrambling, which smooths distortions resulting from mismatch into white noise. DEM Delta-Sigma DAC does mismatch shaping, which pushes distortions away from the signal band, typically lower frequencies. In this thesis, we focused on mismatch-shaping Delta-Sigma DACs. Two of those various algorithms are implemented logically and physically. With placement and routing information, we got more accurate result on the speed and power dissipation. The comparison shows the tradeoff among number of quantization levels, mismatch-shaping order, and hardware complexity. / text
5

Ultra Low-Power Direct Digital Frequency Synthesizer Using a Nonlinear Digital-to-Analog Converter and an Error Compensation Mechanism

Chen, Jian-Ting 11 July 2007 (has links)
This thesis includes two topics. The first one is the architecture as well as the circuit implementation of an ultra low-power direct digital frequency synthesizer (DDFS) based on the straight line approximation. The second one is the circuit implementation of the low-power DDFS with an error compensation. The proposed approximation technique replaces the conventional ROM-based phase-to-amplitude conversion circuitry and the linear digital-to-analog converter with a nonlinear digital-to-analog converter (DAC) to realize a simple approximation of the sine function. Thus, the overall power dissipation as well as hardware complexity can be significantly reduced. Besides, by adding the error compensation, the spurious-free dynamic range (SFDR) of the synthesized output signal can be raised drastically.
6

Programmable voltage reference generator for a SAR-ADC

Mylonas, Georgios January 2013 (has links)
SAR-ADCs are very popular and suitable for conversions up to few tens of MHz with 8 to 12 bits of resolution. A very popular type is the Charge Redistribution SAR-ADC which is based on a capacitive array. Higher speeds can be achieved by using the interleaving technique where a number of SAR-ADCs are working in parallel. These speeds, however, can only be achieved if the reference voltage can cope with the switching of the capacitive array. In this thesis the design of a programmable voltage reference generator for a Charge Redistribution SAR-ADC was studied. A number of architectures were studied and one based on a Current Steering DAC was chosen because of the settling time that could offer to the Charge Redistribution SAR-ADC switching operation. This architecture was further investigated in order to spot the weak points of the design and try to minimize the settling time. In the end, the final design was evaluated and possible trimming techniques were proposed that could further speed up the design.
7

Digital to Analog Converter Design using Single Electron Transistors

Perry, Jonathan 04 August 2005 (has links)
CMOS Technology has advanced for decades under the rule of Moore's law. But all good things must come to an end. Researchers estimate that CMOS will reach a lower limit on feature size within the next 10 to 15 years. In order to assure further progress in the field, new computing architectures must be investigated. These nanoscale architectures are many and varied. It remains to be seen if any will become a legitimate successor to CMOS. Single electron tunneling is a process by which electrons can be trans- ported (tunnel) across a thin insulating surface. A conducting island sepa rated by a pair of quantum tunnel junctions creates a Single Electron Transistor (SET). SETs exhibit higher functionality than traditional MOSFETs, and function best at very small feature sizes, in the neighborhood of 1nm. Many circuits must be developed before SETs can be considered a viable contender to CMOS technology. One important circuit is the Digital to Analog Converter (DAC). DACs are present on many microprocessors and microcontrollers in use today and are necessary in many situations. While other SET circuits have been proposed, including ADCs, no DAC design exists in open literature. We propose three possible SET DAC designs and characterize them with an HSPICE SET simulation model. The first design is a charge scaling architecture similar to what is frequently used in CMOS. The second two designs are based on a current steering architecture, but are unique in their implementation with SETs. / Master of Science
8

Energy-Efficient and Stable CO2 Adsorbent for CO2 Capture

Ma, Yao 25 May 2023 (has links)
No description available.
9

Determination of the Degree of Oxidation in Dialdehyde Cellulose Using Near Infrared Spectroscopy / Bestämning av oxidationsgraden i dialdehydcellulosa med nära infraröd spektroskopi

Brandén, Carl-Magnus January 2017 (has links)
The purpose of this thesis work was to investigate possible in-, on- or at-line methods to determine the degree of oxidation in dialdehyde cellulose. Several technologies were reviewed which led to a feasibility study into a possible on-line or at-line method using near infrared spectroscopy for determining the degree of oxidation in wet dialdehyde cellulose. A calibration model was built using the near infrared spectra of 19 samples created from kraft pulp with a degree of oxidation between 0 and 52.1 %. The obtained model uses five significant principal components and has a goodness of fit (R2) of 0.998 and a goodness ofprediction (Q2) of 0.991. The first principal component describes the degree of oxidation and the second the water content. A validation set of six samples was used to test the model and the predicted values resulted in a root mean square error of prediction of 0.85 in comparison with the reference method which had a pooled standard deviation of 0.69.
10

Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

Giriat, Gaetan January 2012 (has links)
The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-ray diffraction (SXD) studies at low temperature (LT) and the other three HP devices are designed for a Magnetic Property Measurement System (MPMS), two of which are suitable for dc susceptibility studies and the other one is aimed at high frequency ac susceptibility measurements. HP crystallographic studies are routinely carried out in diamond anvil cells (DAC) at room temperature while ambient pressure SXD studies are often conducted at LT to reduce atomic vibrations and obtain more precise structural data as well as to study LT phases. Combining HP with LT gives access to a whole new area on the phase diagrams but due to the size of the existing DACs this is generally achieved by cooling down the cells inside a cryostat and it is mainly possible at synchrotrons where dedicated facilities exist. A miniature DAC which can be used with commercially available laboratory cry-flow cooling systems and achieves pressures in excess of 10 GPa has been developed. The design of the pressure cell is based on the turnbuckle principle and therefore it was called TX-DAC. Its dimensions have been minimised using Finite Element Analysis (FEA) and the final version of the cell weighs only 2.4 g. The cell is built around a pair of 600 μm culet Boehler-Almax anvils which have large conical openings for the diffracted beam. The TX-DAC is made of beryllium copper (BeCu) alloy which has good thermal conductivity and allows quick thermal equilibration of the cell. The MPMS from Quantum Design is the most popular instrument for studies of magnetic properties of materials. It is designed to measure ac and dc magnetic susceptibility of sample with detectable signals as low as 10-8 emu. The MPMS has a sample chamber bore of 9 mm in diameter and this puts a constraint on the dimensions of the pressure cells. However, several types of clamp piston-cylinder cells and DACs have been designed for the MPMS. The former are used for measurements at pressure up to 2 GPa and the later can be used for studies at higher pressure. Taking advantage of the turnbuckle principle, a DAC (TM-DAC) and a piston-cylinder cell (TM-PCC) for dc magnetic studies were built. They allow HP measurements to be performed at the full sensitivity of MPMS. Both pressure cells are made of BeCu and their small dimensions combined with symmetrical design is the key to an ideal background signal correction. The TM-DAC is 7 mm long and 7 mm in diameter, it weighs 1.5 g and with 800 μm culet anvils it can generate a sample pressure of 10 GPa. Inherently the sample volume is limited to approximately 10-3 mm3 and the signal corresponding to this volume of some weakly magnetic material remains below the sensitivity of the MPMS. This constraint led us to the development of the TM-PCC – a piston-cylinder variant of the turnbuckle design. With a 4 mm3 sample volume it allows the study of weakly magnetic samples in the range 0-1.9 GPa. The TM-PCC uses two zirconia pistons of 2.5 mm in diameter; it is 10 mm long, 7 mm in diameter and weights 2.7 g. Conventional metallic pressure cells perform well in dc mode however in ac susceptibility measurements, the Eddy currents set in the cells’ body lead to a screening effect which can significantly obscure the signal from the sample. This problem was solved by designing a composite piston-cylinder cell made with Zylon fibre and epoxy resin. The sample is located in the middle of the cell in the 2.5 mm bore and the pressure is transmitted through zirconia pistons. Keeping the metallic parts away from the sample resolves any interference issue. The composite cell performs well in a pressure range of 0-1 GPa. The performance of the pressure cells developed within this project is illustrated by studies of various systems at high pressure.

Page generated in 0.0117 seconds