• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ENHANCING RESOURCE-USE EFFICIENCY FOR INDOOR FARMING

Fatemeh Sheibani (16649382) 03 August 2023 (has links)
<p>Vertical farming (VF) as a newer sector of controlled-environment agriculture (CEA) is proliferating as demand for year-round, local, fresh produce is rising. However, there are concerns regarding the high capital expenses and significant operational expenses that contribute to fragile profitability of the VF industry. Enhancing resource-use efficiency is a strategy to improve profitability of the VF industry, and different approaches are proposed in the three chapters of this dissertation. LEDs are used for sole-source lighting in VF, and although they recently have significantly improved electrical efficiency and photon efficacy, the Lambertian design of the illumination pattern leads to significant loss of obliquely emitted photons beyond cropping areas. In chapter 1, close-canopy lighting (CCL) is proposed as one effective energy-saving strategy, through which unique physical properties of LEDs were leveraged, and two CCL strategies (energy efficiency and yield enhancement) were characterized at four different separation distances between light-emitting and light-absorbing surfaces. Dimming to the same light intensity at all separation distances resulted in the same biomass production while significant energy savings occurred at closer distances. Significantly higher light intensity and yield were achieved under closer separation distances in the yield-enhancement strategy for the same energy input. The energy-utilization efficiency (g fresh/dry biomass per kWh of energy) was doubled in both scenarios when the separation distance between LED emitting surface and crop surface was reduced maximally. At reduced separation distances, the chance of photon escape from growth areas is less, and canopy photon capture efficiency is improved.</p><p>Optimizing environmental conditions for indoor plant production also helps improve resource-use efficiency for the nascent vertical-farming industry. Although significant technical advancements of LEDs have been made, use of efficient far-red (FR) LEDs has yet to be exploited. As a recent proposed extension to traditional photosynthetically active radiation (PAR, 400-700 nm), FR radiation (700-750 nm) contributes to photosynthesis as well as photomorphogenesis when added to shorter wavelengths of traditional PAR. However, the interaction of FR with other environmental parameters such as CO2 is less studied. In chapter 2, the interaction effect of four FR fluxes (as substitution for red) in combination with three different CO2 concentrations were investigated at three distinctive stages of young-lettuce production. The highest biomass achieved at all stages occurred at 800 mmol mol-1 CO2 compared to 400 and 1600 mmol mol-1. A photomorphogenic effect of FR to promote leaf length was pronounced at the earliest stages of development, at which FR did not contribute to higher biomass accumulation. At more developed stages, 20 mmol m-2 s-1 of FR substituting for red contributed to biomass accumulation similar to shorter wavelengths of traditional PAR, whereas higher fluxes of FR in the light recipe resulted in undesirable quality attributes such as longer leaves.</p><p>Optimizing environmental conditions for indoor production with emphasis on light intensity and CO2 concentration at four distinctive stages of lettuce production was investigated in chapter 3. Utilizing the Minitron III gas-exchange system, light and CO2 dose-response profiles were characterized at four distinctive crop-development stages through instantaneous gas-exchange measurements at crop level. At all developmental stages, as CO2 concentration increased, photosynthesis increased up to 500 mmol mol-1, above which the incremental rate of photosynthesis was reduced. Light-dose response profiles were characterized at 400 or 800 mmol mol-1 CO2, and as light intensity increased, photosynthesis increased up to 650 mmol m-2 s-1. However, when instantaneous power (Watts) consumed for lighting was taken into consideration, power-use efficiency as the ratio of output photosynthesis increment to input power increment (to increase light intensity), decreased at higher light intensities. Vertical farming as a nascent and growing industry is facing limitations including marginal and even elusive profitability. Optimizing environmental conditions for indoor plant production such as these will help improve resource-use efficiency and profitability of the vertical farming industry.</p>
2

Resilience of Forest Carbon Storage through Disturbance and Succession

Hardiman, Brady S. 19 July 2012 (has links)
No description available.
3

Mesure et modélisation des bilans de lumière, d'eau, de carbone et de productivité primaire nette dans un système agroforestier à base de caféier au Costa Rica / Measuring and modeling light, water and carbon budgets and net primary productivity in a coffee-based agroforestry system of Costa Rica

Charbonnier, Fabien 19 December 2013 (has links)
Comparés aux monocultures, les systèmes agroforestiers (SAF) sont censés permettre une meilleure efficience d'utilisation de la ressource et améliorer les services écosystémiques. Cependant, la complexité des interactions se produisant dans les SAF rend délicate la quantification et la décomposition des effets des arbres d'ombrage sur la productivité primaire nette (NPP) de la culture principale. Peu de modèles sont capables d'analyser les effets des interactions entre culture principale et arbres d'ombrage sur les échanges de CO2 et d'eau. En effet, les interactions pour la lumière, l'eau et la chaleur se produisant entre culture et arbres d'ombrage peuvent produire des effets contre-intuitifs sur la photosynthèse, l'efficience d'utilisation de la lumière (LUE), l'efficience de transpiration et le microclimat. Nous montrons que MAESPA, un modèle 3D mécaniste, peut-être utilisé pour étudier la variabilité de ces processus à des échelles allant de la plante à la parcelle, et de la demi-heure à l'année entière. MAESPA a simulé de manière satisfaisante l'interception de la lumière dans un SAF à base de caféier composé de 2 couches hétérogènes. Des variables modélisées par MAESPA ont été utilisées pour produire de puissantes variables explicatives dans un dispositif expérimental étudiant les déterminants de la NPP aérienne (ANPP) du caféier. Il a été démontré que LUE était deux fois plus élevée pour les caféiers poussant à l'ombre ce qui compensait totalement la diminution de leurs budgets lumineux, résultant en une absence de différence de ANPP entre caféiers de plein soleil et caféiers d'ombrage. MAESPA a aussi simulé de manière satisfaisante les échanges de CO2 à l'échelle du caféier et à l'échelle de la parcelle, lorsque comparés à des mesures d'échanges gazeux dans des chambres plantes entières ou à des enregistrements de flux turbulents au-dessus de la canopée, respectivement. Nous avons utilisé MAESPA pour simuler la variabilité spatiale de la photosynthèse et de LUE. MAESPA a démontré être un modèle robuste pour quantifier les interactions spatiales dans un SAF. Le prochain développement pertinent de cette approche serait de coupler MAESPA avec un modèle d'allocation du carbone dans les organes des plants de caféiers / Compared to monocultures, agroforestry systems (AFS) are expected to provide enhanced resource-use efficiency and larger ecosystem services. However, due to the complexity of the interactions occurring in AFS, it is challenging to quantify and decompose the effects of shade trees on the main crop net primary productivity (NPP). Few process-based models are able to analyze the interactions between crop and shade trees for carbon and water. Interactions for light, water and energy occurring between tree and crops might have counterintuitive effects on photosynthesis, light use efficiency (LUE), transpiration efficiency and microclimate. We showed that a 3D process-based model, MAESPA, was able to quantitatively describe the spatial variability of those processes from the plant to the plot, and from hourly to yearly timescales. MAESPA simulated satisfactorily light interception in a 2-layer heterogeneous coffee AFS. It was used to produce powerful explanatory variables in AFS experiments and to analyze the determinants of coffee plant NPP. LUE displayed a 2-fold increase for shaded coffee plants totally compensating the expected decrease of local irradiance interception, and coffee plant ANPP was the same below shade trees or in the open. MAESPA also simulated satisfactorily carbon exchange at whole plant and plot scales, when compared to gas exchange records in a whole-plant chamber, or with eddy-covariance records above the canopy. We used MAESPA to simulate the spatial variability of photosynthesis and LUE. Overall, MAESPA proved to be a relevant model to quantify spatial interactions. The next very relevant development would be to couple it to a model of carbon allocation among organs in the coffee plants

Page generated in 0.0546 seconds