• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The brain renin-angiotensin system in metabolic and cardiovascular regulation

Claflin, Kristin Elizabeth 01 December 2016 (has links)
Leptin acts within the brain to increase resting metabolic rate (RMR) and blood pressure (BP). The renin-angiotensin system (RAS) elicits similar effects in the brain, as reviewed in chapter 1, and it has previously been shown that central angiotensin II type 1 (AT1) receptors are required for leptin-mediated inductions in sympathetic nerve activity to the brown adipose tissue. Thus, we hypothesize that the brain RAS mediates the metabolic effects of leptin. To investigate the interaction between the RAS and leptin, we generated the AT1ALepR-KO mouse which lacks the AT1A receptor in leptin-sensitive cells. In chapter 2, we demonstrated that stimulation of RMR by DOCA-salt and high fat diet requires AT1A receptors in leptin receptor-expressing cells and that these cells expressing both AT1A and the leptin receptor appear to be agouti related-peptide (AgRP) neurons. In chapter 3, we investigated the role of AT1A specifically in AgRP neurons by utilizing AT1AAgRP-KO mice. Similar to AT1ALepR-KO mice, AT1AAgRP-KO mice exhibited deficits in BAT SNA responses to leptin and induction of RMR by alpha melanocyte stimulating hormone. In chapter 4, we utilized a novel transgenic mouse model to demonstrate that microglia do not express the AT1A receptor under chow or high fat diet fed conditions. Taken together, we conclude that a subset of AgRP neurons, which express both the leptin receptor and the AT1A receptor, are critical for the control of sympathetic nerve activity and ultimately RMR.

Page generated in 0.0839 seconds