• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The potential applications of AMPK activator resveratrol and PAK1 inhibitor IPA-3 in cancer therapy

Wong, Yuk-na, 王玉娜 January 2010 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
2

Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells

Sprouse, Alyssa A. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Resveratrol has been shown to inhibit cell growth and induce apoptosis, as well as augment chemotherapeutics and irradiation in multiple cancer types. However, it is unknown if resveratrol is beneficial for treating drug-resistant cancer cells. To study the effects of resveratrol in triple negative breast cancer cells that are resistant to the common cancer drug, paclitaxel, a novel paclitaxel-resistant cell line was generated from the MDA-MB-231 breast cancer cell line. The resulting cell line, MDA-MB-231/PacR, exhibited a 12-fold increased resistance to paclitaxel but remained sensitive to resveratrol treatment. Resveratrol treatment reduced cell proliferation and colony formation and increased senescence and apoptosis in both the parental MDA-MB-231 and MDA-MB-231/PacR cell lines. Importantly, resveratrol treatment augments the effects of paclitaxel in both cell lines. The expression of the drug efflux transporter gene, MDR1, and the main metabolizing enzyme of paclitaxel gene, CYP2C8, was increased in the resistant cells. Moreover, pharmacological inhibition of the protein products of these genes, P-glycoprotein and CYP2C8, decreased paclitaxel resistance in the resistant but not in the parental cells, which suggests that the increase of these proteins are important contributors to the resistance of these cells. In conclusion, these studies imply that resveratrol, both alone and in combination with paclitaxel, may be useful in the treatment of paclitaxel-sensitive and paclitaxel-resistant triple negative breast cancers.

Page generated in 0.3289 seconds