• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional MRI and behavioral investigations of long-term memory-guided visuospatial attention

Rosen, Maya 08 April 2016 (has links)
Real-world human visual perception is superb, despite pervasive attentional capacity limitations that can severely impact behavioral performance. Long-term memory (LTM) is suggested to play a key role in efficiently deploying attentional resources; however, the nature of LTM-attention interactions remains poorly understood. Here, I present a series of behavioral and functional magnetic resonance imaging (fMRI) investigations of the mechanisms of LTM-guided visual attention in 139 healthy participants (18-34 years). In Experiment 1, I hypothesized that humans can use memory to guide spatial attention to multiple discrete locations that have been previously studied. Participants were able to simultaneously attend to more than one spatial location using an LTM cue in a novel change-detection behavioral paradigm also used in fMRI Experiments 2 and 4. Cortical networks associated with LTM and attention often interact competitively. In Experiment 2, I hypothesized that the cognitive control network supports cooperation between LTM and attention. Three posterior regions involved with cognitive control were more strongly recruited for LTM-guided attention than stimulus-guided attention: the posterior precuneus, posterior callosal sulcus, and lateral intraparietal sulcus. In Experiment 3, I hypothesized that regions identified in Experiment 2 are specifically activated for LTM-guided attention, not for LTM retrieval or stimulus-guided attention alone. This hypothesis was supported. Taken together, the results of Experiments 2 and 3 identify a cognitive control subnetwork specifically recruited for LTM-guided attention. Experiment 4 tested how LTM-guided attention affected spatial responsivity of maps within intraparietal sulcus. I hypothesized that left parietal maps would change their spatial responsivity due to the left lateralized effects of memory retrieval. During stimulus-guided attention, contralateral visuotopic maps in the right but not left intraparietal sulcus responded to the full visual field. In contrast, during LTM-guided attention, maps in both the left and right intraparietal sulcus responded to the full visual field, providing evidence for complementary forms of dynamic recruitment under different attentional conditions. Together, these results demonstrate that LTM-guided attention is supported by a parietal subnetwork within the cognitive control network and that internal attentional states influence the spatial specificity of visuotopically mapped regions in parietal cortex.
2

Characterizing Retinotopic Mapping Using Conformal Geometry and Beltrami Coefficient: a Preliminary Study

January 2013 (has links)
abstract: Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex. / Dissertation/Thesis / M.S. Computer Science 2013
3

From Photons to Photos: Mapping Functional and Organizational Properties of Human Visual Cortex with fMRI

Berman, Daniel 21 May 2015 (has links)
No description available.
4

Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A

McKeefry, Declan J., Burton, Mark P., Vakrou, Chara, Barrett, Brendan T., Morland, A.B. 02 July 2008 (has links)
No / In this report, we evaluate the role of visual areas responsive to motion in the human brain in the perception of stimulus speed. We first identified and localized V1, V3A, and V5/MT+ in individual participants on the basis of blood oxygenation level-dependent responses obtained in retinotopic mapping experiments and responses to moving gratings. Repetitive transcranial magnetic stimulation (rTMS) was then used to disrupt the normal functioning of the previously localized visual areas in each participant. During the rTMS application, participants were required to perform delayed discrimination of the speed of drifting or spatial frequency of static gratings. The application of rTMS to areas V5/MT and V3A induced a subjective slowing of visual stimuli and ( often) caused increases in speed discrimination thresholds. Deficits in spatial frequency discrimination were not observed for applications of rTMS to V3A or V5/MT+. The induced deficits in speed perception were also specific to the cortical site of TMS delivery. The application of TMS to regions of the cortex adjacent to V5/MT and V3A, as well as to area V1, produced no deficits in speed perception. These results suggest that, in addition to area V5/MT+, V3A plays an important role in a cortical network that underpins the perception of stimulus speed in the human brain. / BBSRC
5

Effect of Attentional Capture and Cross-Modal Interference in Multisensory Cognitive Processing

Jennings, Michael 01 January 2018 (has links)
Despite considerable research, the effects of common types of noise on verbal and spatial information processing are still relatively unknown. Three experiments, using convenience sampling were conducted to investigate the effect of auditory interference on the cognitive performance of 24 adult men and women during the Stroop test, perception of object recognition and spatial location tasks, and the perception of object size, shape, and spatial location tasks. The data were analyzed using univariate analysis of variance and 1-way multivariate analysis of variance. The Experiment 1 findings indicated reaction time performance for gender and age group was affected by auditory interference between experimental conditions, and recognition accuracy was affected only by experimental condition. The Experiment 2a results showed reaction time performance for recognizing object features was affected by auditory interference between age groups, and recognition accuracy by experimental condition. The Experiment 2b results demonstrated reaction time performance for detecting the spatial location of objects was affected by auditory interference between age groups. In addition, reaction time was affected by the type of interference and spatial location. Further, recognition accuracy was affected by interference condition and spatial location. The Experiment 3 findings suggested reaction time performance for assessing part-whole relationships was affected by auditory interference between age groups. Further, recognition accuracy was affected by interference condition between experimental groups. This study may create social change by affecting the design of learning and workplace environments, the neurological correlates of auditory and visual stimuli, and the pathologies of adults such as attention deficit hyperactivity disorder.
6

Asymétries fonctionnelles du cortex visuel observées par spectroscopie proche de l’infrarouge fonctionnelle

Bastien, Danielle 11 1900 (has links)
Les objectifs de ce mémoire sont d’étudier la rétinotopie et les asymétries fonctionnelles du cortex visuel chez l’humain avec la spectroscopie proche de l’infrarouge fonctionnelle (SPIRf), tout en confirmant la fiabilité de cette technique. Tel qu’attendu, les résultats montrent une activation plus forte dans l’hémisphère controlatéral et dans le cortex haut/bas inverse à l’hémichamp stimulé. Nous avons également mesuré une activation significativement plus forte dans le cortex visuel supérieur (lorsque le champ visuel inférieur était stimulé) que l’activation dans le cortex visuel inférieur (lorsque le champ visuel supérieur était stimulé), surtout lorsque ces stimuli étaient présentés dans le champ visuel droit. Il s’agit de la première étude en SPIRf à observer les asymétries horizontale et verticale du cortex visuel et à ainsi confirmer l’existence de ces asymétries. Cette étude témoigne également de la fiabilité de la SPIRf comme technique d’imagerie pour cartographier le cerveau humain. / The present study aimed to further investigate retinotopic mapping and functional asymmetries within the human visual cortex using functional near-infrared spectroscopy (fNIRS), as well as the reliability of this technique. As expected, results showed a stronger visual cortical activation in the controlateral hemisphere and in the inverse upper/lower quadrant to the stimulation. We also measured significant stronger activations in the upper visual cortex (when lower hemifield stimuli were presented) compared to activations in the lower visual cortex (when upper hemifield stimuli were showed), especially when the visual stimulation was presented in the right visual field. This is the first study to confirm the vertical and horizontal asymmetries of the visual cortex with fNIRS technique. The present work also settles the reliability of this technique for functional mapping of the human brain.

Page generated in 0.0869 seconds