Spelling suggestions: "subject:"rhizobium/legume symbiosis"" "subject:"rhizobium/regume symbiosis""
1 |
Understanding the molecular dialog between arbuscular mycorrhizal fungi and non-legume plants / Etude du dialogue moléculaire entre les champignons endomycorhiziens et les plantes non-légumineuses dans le cadre de la symbiose endomycohizienne à arbusculesGirardin, Ariane 04 December 2017 (has links)
Les endosymbioses racinaires sont des associations bénéfiques établies entre les racines des plantes et des micro-organismes du sol. Ces symbioses ont un intérêt agronomique et écologique puisque les plantes fournissent à leurs partenaires microbiens une niche écologique et des sucres issus de la photosynthèse et en retour, les micro-organismes associés aux racines vont fournir à la plante des nutriments minéraux qui sont actuellement apportés dans l’agriculture conventionnelle sous forme d’engrais. Durant ma thèse, j’ai particulièrement étudié la symbiose endomycorhizienne à arbuscules (AMS). Elle implique des champignons du groupe des Gloméromycètes et plus de 80 % des plantes terrestres. Ainsi cette symbiose est la plus répandue sur terre connue à l’heure actuelle. Plusieurs étapes importantes pour l’établissement de l’AMS ont été définies. La première de ces étapes est la reconnaissance mutuelle entre le champignon endomycorhizien et la plante hôte. Le champignon est capable de percevoir les plantes par les exsudats racinaires qu’elles sécrètent dans la rhizosphère. Dans le mélange complexe de molécules que sont les exsudats racinaires, des phytohormones appelées strigolactones activent le métabolisme des champignons endomycorhizien, la ramification des leurs hyphes et la production de molécules fongiques appelée facteurs Myc. La perception des facteurs Myc par la plante active des processus permettant la colonisation des racines par le champignon. Ce dialogue moléculaire entre champignons endomycorhiziens et plantes hôtes reste toutefois méconnu. Des molécules de type Lipo-chitooligosaccharides (LCO) ou chito-oligosaccharides (CO) ont été identifiées dans les exsudats de spores ou d’hyphes de champignons et activent la voie de signalisation symbiotique chez les plantes mais leurs rôles respectifs dans l’établissement de l’AMS restent mal compris. Du côté de la plante, des récepteurs potentiels aux LCOs et aux COs sont codés par les gènes de la famille des Lysin Motif Receptor-Like Kinase (LysM-RLK) qui sont capables de lier les constituants structuraux des LCOs et des COs. Cependant aucune preuve n’avait été apportée, au commencement de ma thèse, permettant de conclure sur le rôle des LCOs, des COs, et des LysM-RLKs dans la mise en place de l’AMS. C’est ce que je me suis attachée à démontrer durant ma thèse. Pour cela, j’ai travaillé sur une dicotylédone (la tomate : Solanum lycopersicum) et sur une monocotylédone (Brachypodium distachyon, un modèle pour le blé). Pour identifier les récepteurs aux LCOs dans ces plantes et déterminer leur rôle dans l’AMS nous avons mis en place des techniques de génétique inverse. Nous avons ensuite déterminé l’affinité de ces récepteurs pour les LCOs. Ainsi, nous avons montré que la perception des LCOs dans la tomate est importante pour la mise en place de l’AMS. Par ailleurs, je me suis intéressée à la symbiose entre des bactéries du type rhizobium et des plantes principalement de la famille des légumineuses. La mise en place de cette symbiose nécessite la synthèse de LCOs par les rhizobia et leur perception par la plante via des récepteurs de la famille des LysM-RLKs. Ces similarités que la symbiose rhizobium-légumineuses partage avec l’AMS nous ont conduits à poser la question de savoir si les récepteurs de LCOs impliqués dans l’AMS (beaucoup plus ancienne que la symbiose rhizobium-légumineuse) ont été recrutés durant l’évolution pour jouer un rôle dans la symbiose rhizobium-légumineuse. J’ai pu montrer que les récepteurs de LCOs impliqués dans l’AMS chez les espèces non-légumineuses susmentionnées sont fonctionnels l’établissement de la symbiose rhizobium-légumineuse chez une légumineuse. / Root endosymbioses are beneficial associations established between plant roots and soil microorganisms. These symbioses have an agronomic and ecological interest as plants provide their microbial partners with an ecological niche and carbohydrates from photosynthesis. In return, the root-associated microorganisms provide the plant with minerals that are currently being delivered in conventional agriculture as fertilizers. During my thesis, I particularly studied the arbuscular mycorrhizal symbiosis (AMS). It involves fungi of the Glomeromycota group and more than 80 % of land plants. This is the currently known most widespread symbiosis on earth. Important steps for the AMS establishment have been defined. The first step is the mutual recognition between the endomycorrhizal fungus and the host plant. Fungi can perceive plants through the root exudates. In the complex mixture of molecules in the root exudates, phytohormones called strigolactones activate the endomycorrhizal fungal metabolism, the branching of their hyphae and the production of fungal molecules called Myc-Factors. Myc-Factors are perceived by the plant and activate a signaling pathway allowing root colonization by the fungus. However, parts of the molecular dialogue between endomycorrhizal fungi and host plants remain unknown. Lipo-chitooligosaccharide (LCO) or chito-oligosaccharides (CO) molecules have been found in exudates of fungal spores or hyphae and were shown to activate the plant symbiotic signaling pathway, however their respective roles in the AMS establishment are unclear. Putative plant receptors for LCOs and COs are encoded by genes from the Lysin Motif Receptor-Like Kinase family (LysM-RLK) which are able of binding the structural LCO and CO components. However, at the beginning of my PhD, we had no evidence allowing to conclude about the involvement of LCOs, COs, or LysM-RLKs in the AMS establishment. During my thesis, I aimed to understand the role the LCOs and their plant receptors in AMS. For this, I used on a dicotyledon (the tomato: Solanum lycopersicum) and on a monocotyledon (Brachypodium distachyon that is a model for wheat). In order to identify the LCO receptors in these two species, I used a reverse genetic approach. Then I determined these receptors affinity for various LCO structures. I showed that in tomato, LCO perception is important for AMS establishment. In addition, I have studied the symbiosis between rhizobium-type bacteria and plants of the legume family. Interestingly, the establishment of this symbiosis requires LCO synthesis by rhizobia and LCO perception by the plant via receptors of the LysM-RLK family. The fact that rhizobium-legume symbiosis shares similarities with the AMS led us to ask whether the LCO receptors involved in AMS (a much more ancient symbiosis than the rhizobium-legume symbiosis) have been recruited during evolution for a role in the rhizobium-legume symbiosis. I demonstrated that the LysM-RLKs involved in AMS in the above mentioned non-legume species are functional for the rhizobium-legumes establishment in a legume species.
|
2 |
CaracterizaÃÃo fenotÃpica de rizÃbios de solo rizosfÃrico de leguminosas nativas do semi-Ãrido cearense / Phenotypic characterization of rhizobia soil rhizosphere of legumes native to semi-arid region of CearÃCarlos Germano Ferreira Costa 29 June 2010 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Os diferentes solos e manejos culturais afetam o equilÃbrio entre solo e organismos
endÃgenos, os quais, por sua vez afetam a sustentabilidade do solo. Desse modo
acredita-se que a diversidade dos organismos do solo tenha uma relaÃÃo estreita com a
diversidade de outros organismos, tanto na superfÃcie, quanto no prÃprio solo e que as
interaÃÃes dessa diversidade microbiana possam levar a uma alteraÃÃo de funÃÃo
reduzindo ou ampliando a sustentabilidade dos ecossistemas. InteraÃÃes mutualÃsticas
sÃo muito comuns na natureza e desempenham importante papel em muitos processos
de diversos ecossistemas. Desse modo, a identificaÃÃo dos padrÃes da estrutura espacial
e abundÃncia de microrganismos à um elemento importante e, necessÃrio para
identificar esse processo.AssociaÃÃes mutualÃsticas entre plantas e organismos do solo
sÃo essenciais para a sobrevivÃncia e crescimento das plantas na maioria dos
ecossistemas terrestres. Assim, o uso combinado de leguminosas e microrganismos na
reabilitaÃÃo de solos deteriorados à um processo efetivo na reestabilizaÃÃo dos ciclos de
nutrientes nesse sistema, pois a estrutura alimentar do solo pode afetar o
desenvolvimento da vegetaÃÃo. O mutualismo entre rizÃbios e leguminosas à possÃvel
de manipulaÃÃo experimental. Diferente de alguns mutualistas, rizÃbios podem crescer
e ser cultivados em meios seletivos. AlÃm disso, seu comportamento mutualista dentro
dos nÃdulos pode ser manipulado e monitorado de modo nÃo invasivo. objetivo deste
trabalho foi avaliar a diversidade de estirpes nativas de rizÃbio e a relaÃÃo com algumas
espÃcies de leguminosas arbÃreas nativas ocorrentes na Reserva Particular do
PatrimÃnio Natural (RPPN) Serra das Almas (05Â 00â a 05Â 20â S e 40Â 48 a 41Â 12â
W) no estado do Cearà (Brasil),em uma Ãrea de caatinga no municÃpio de CrateÃs-Ce,
dista 390 Km de Fortaleza, entre cotas de 300 a 350 m de altitude, e que caracteriza-se
pro apresentar clima semi Ãrido e pluviosidade mÃdia de 881 mm anuais distribuÃda de
Janeiro a Abril. Foram identificadas oito espÃcies de leguminosas arbÃreas, que
apresentaramassociaÃÃes com rizÃbios: Anadenanthera colubrina var. cebil
(Griseb)Altschu (Angico), Bauhinia cheilantha (Bong.) Stend (MororÃ), Poincianella
pyramidalis (Tul.) L.P. Queiroz (Catingueira), Erythrina velutina Willd. (Mulungu),
Mimosa caesalpiniifolia Benth (SabiÃ), Minosa acustistipula (Mart.) Benth (Juremabranca),
Mimosa tenuiflora (Willd.) Poir (Jurema-preta), Amburana Cearensis
(AllemÃo) A.C. Smith (Emburana). Foram coletados nÃdulos e solo rizosfÃrico para a
identificaÃÃo de bactÃrias diazotrÃficas, em dois perÃodos, na estaÃÃo chuvosa e na seca.
Foi realizado o cultivo destes rizÃbios nas plantas-isca, Macropitillium atropurpureum
(DC) Urban, Vigna unguiculata (L., Walp.), Cajanus cajan var. flavus DC e Mimosa
pudica L, bem como a caracterizaÃÃo cultural caracterizaÃÃo cultural de estirpes de
rizÃbio isolados, testes de tolerÃncia a nÃveis crescentes de NaCl e a altas
temperaturas.Verificou-se que 92,42% dos isolados apresentara crescimento rÃpido e
52,24% acidificaram o meio 79. Um total de 84,93% isolados possuem tolerÃncia a altas
temperaturas (45Â C), e 90,75% isolados apresentaram tolerÃncia Ãs concentraÃÃes
salinas a 5%.Os resultados obtidos demonstraram que hà relaÃÃo entre a tolerÃncia Ã
salinidade e à temperatura quando avaliado in vitro para os isolados testados
|
3 |
Studies on legume receptors for Nod and Myc symbiotic signals / Etude des récepteurs des signaux symbiotiques Nod et Myc chez les légumineusesMalkov, Nikita 12 May 2015 (has links)
Les symbioses rhizobienne et mycorhizienne à arbuscules sont deux endosymbioses racinaires jouant des rôles importants dans le développement des plantes en améliorant leur nutrition minérale. Les lipo-chitooligosaccharides (LCOs), produits par les bacteries Rhizobia et les champignons mycorhiziens, sont essentiels pour l'établissement de la symbiose rhizobienne et stimulent la mycorhization. Chez la légumineuse Medicago truncatula, trois récepteurs-like kinase à motifs lysin (LysM), LYR3, NFP et LYK3 sont impliqués dans la perception des LCOs. Le travail présenté a eu pour objectif la caractérisation biochimique de ces récepteurs et leurs applications potentielles. Les orthologues de LYR3 de M. truncatula ont été clonés et se sont tous révélés, à l'exception de celui du lupin, capables d'établir une interaction d'affinité élevée avec les LCOs mais pas avec les chitooligosaccharides de structure apparentée. Afin de mieux comprendre les bases moléculaires de la reconnaissance des LCOs, des échanges de domaine entre les protéines LYR3 de lupin et de Medicago ont été effectués et ont révélé l'importance du troisième domaine LysM dans l'interaction. L'exploitation des capacités de reconnaissance des LCOs par LYR3 à des fins biotechnologiques a été évaluée à l'aide de récepteurs chimériques constitués du domaine extracellulaire de LYR3 et du domaine kinase des récepteurs immunitaires AtCERK1 et EFR. Il est apparu que LYR3 peut être utilisé pour élaborer des récepteurs chimériques mais leur mode d'activation reste à optimiser. Enfin l'étude des deux récepteurs symbiotiques NFP et LYK3 suggère qu'ils sont régulés par phosphorylation suite au traitement par les signaux symbiotiques. L'ensemble de ce travail apporte un éclairage nouveau sur les mécanismes de perception des LCOs et sur les modifications associées à leurs récepteurs qui en résultent. / Arbuscular mycorrhization and rhizobial nodulation are two major root endosymbioses which play important roles in plant development by improving their mineral nutrition. Produced by Rhizobia bacteria and mycorrhizal fungi, lipo-chitooligosaccharides (LCOs) were shown to be essential for the formation of the rhizobial symbiosis and to have stimulatory effects on mycorrhization. In the legume Medicago truncatula three lysin motif (LysM) receptor-like kinases LYR3, NFP and LYK3 have been shown to be involved in LCO perception. Here work is presented aimed at the biochemical characterization and application of these important receptor proteins. Cloned from several legume species orthologs of M. truncatula LYR3, except from lupin, were shown to bind LCOs with high affinity, but not structurally-related chitooligosaccharides (COs). Domain swaps between the lupin and Medicago proteins were used as a tool to decipher the molecular basis of LCO recognition and revealed the importance of the third LysM domain for LCO binding. The possibility of exploiting the LCO-binding capacity of LYR3 in biotechnology, through the composition of chimeric receptors, was investigated by combining together the extracellular domain of LYR3 protein with the kinases of Arabidopsis thaliana immune receptors, AtCERK1 and EFR. The results suggest that LYR3 could be used for constructing biologically active chimeric proteins whose mode of activation needs to be improved. Finally studies on the two LysM symbiotic receptors NFP and LYK3 suggest that they are regulated by changes in their phosphorylation after symbiotic treatments. Together this work brings light on the mechanisms underlying LCO perception and the modifications that receptors undergo after their treatment with LCO.
|
Page generated in 0.0788 seconds