Spelling suggestions: "subject:"rysy"" "subject:"nyss""
1 |
Understanding the molecular dialog between arbuscular mycorrhizal fungi and non-legume plants / Etude du dialogue moléculaire entre les champignons endomycorhiziens et les plantes non-légumineuses dans le cadre de la symbiose endomycohizienne à arbusculesGirardin, Ariane 04 December 2017 (has links)
Les endosymbioses racinaires sont des associations bénéfiques établies entre les racines des plantes et des micro-organismes du sol. Ces symbioses ont un intérêt agronomique et écologique puisque les plantes fournissent à leurs partenaires microbiens une niche écologique et des sucres issus de la photosynthèse et en retour, les micro-organismes associés aux racines vont fournir à la plante des nutriments minéraux qui sont actuellement apportés dans l’agriculture conventionnelle sous forme d’engrais. Durant ma thèse, j’ai particulièrement étudié la symbiose endomycorhizienne à arbuscules (AMS). Elle implique des champignons du groupe des Gloméromycètes et plus de 80 % des plantes terrestres. Ainsi cette symbiose est la plus répandue sur terre connue à l’heure actuelle. Plusieurs étapes importantes pour l’établissement de l’AMS ont été définies. La première de ces étapes est la reconnaissance mutuelle entre le champignon endomycorhizien et la plante hôte. Le champignon est capable de percevoir les plantes par les exsudats racinaires qu’elles sécrètent dans la rhizosphère. Dans le mélange complexe de molécules que sont les exsudats racinaires, des phytohormones appelées strigolactones activent le métabolisme des champignons endomycorhizien, la ramification des leurs hyphes et la production de molécules fongiques appelée facteurs Myc. La perception des facteurs Myc par la plante active des processus permettant la colonisation des racines par le champignon. Ce dialogue moléculaire entre champignons endomycorhiziens et plantes hôtes reste toutefois méconnu. Des molécules de type Lipo-chitooligosaccharides (LCO) ou chito-oligosaccharides (CO) ont été identifiées dans les exsudats de spores ou d’hyphes de champignons et activent la voie de signalisation symbiotique chez les plantes mais leurs rôles respectifs dans l’établissement de l’AMS restent mal compris. Du côté de la plante, des récepteurs potentiels aux LCOs et aux COs sont codés par les gènes de la famille des Lysin Motif Receptor-Like Kinase (LysM-RLK) qui sont capables de lier les constituants structuraux des LCOs et des COs. Cependant aucune preuve n’avait été apportée, au commencement de ma thèse, permettant de conclure sur le rôle des LCOs, des COs, et des LysM-RLKs dans la mise en place de l’AMS. C’est ce que je me suis attachée à démontrer durant ma thèse. Pour cela, j’ai travaillé sur une dicotylédone (la tomate : Solanum lycopersicum) et sur une monocotylédone (Brachypodium distachyon, un modèle pour le blé). Pour identifier les récepteurs aux LCOs dans ces plantes et déterminer leur rôle dans l’AMS nous avons mis en place des techniques de génétique inverse. Nous avons ensuite déterminé l’affinité de ces récepteurs pour les LCOs. Ainsi, nous avons montré que la perception des LCOs dans la tomate est importante pour la mise en place de l’AMS. Par ailleurs, je me suis intéressée à la symbiose entre des bactéries du type rhizobium et des plantes principalement de la famille des légumineuses. La mise en place de cette symbiose nécessite la synthèse de LCOs par les rhizobia et leur perception par la plante via des récepteurs de la famille des LysM-RLKs. Ces similarités que la symbiose rhizobium-légumineuses partage avec l’AMS nous ont conduits à poser la question de savoir si les récepteurs de LCOs impliqués dans l’AMS (beaucoup plus ancienne que la symbiose rhizobium-légumineuse) ont été recrutés durant l’évolution pour jouer un rôle dans la symbiose rhizobium-légumineuse. J’ai pu montrer que les récepteurs de LCOs impliqués dans l’AMS chez les espèces non-légumineuses susmentionnées sont fonctionnels l’établissement de la symbiose rhizobium-légumineuse chez une légumineuse. / Root endosymbioses are beneficial associations established between plant roots and soil microorganisms. These symbioses have an agronomic and ecological interest as plants provide their microbial partners with an ecological niche and carbohydrates from photosynthesis. In return, the root-associated microorganisms provide the plant with minerals that are currently being delivered in conventional agriculture as fertilizers. During my thesis, I particularly studied the arbuscular mycorrhizal symbiosis (AMS). It involves fungi of the Glomeromycota group and more than 80 % of land plants. This is the currently known most widespread symbiosis on earth. Important steps for the AMS establishment have been defined. The first step is the mutual recognition between the endomycorrhizal fungus and the host plant. Fungi can perceive plants through the root exudates. In the complex mixture of molecules in the root exudates, phytohormones called strigolactones activate the endomycorrhizal fungal metabolism, the branching of their hyphae and the production of fungal molecules called Myc-Factors. Myc-Factors are perceived by the plant and activate a signaling pathway allowing root colonization by the fungus. However, parts of the molecular dialogue between endomycorrhizal fungi and host plants remain unknown. Lipo-chitooligosaccharide (LCO) or chito-oligosaccharides (CO) molecules have been found in exudates of fungal spores or hyphae and were shown to activate the plant symbiotic signaling pathway, however their respective roles in the AMS establishment are unclear. Putative plant receptors for LCOs and COs are encoded by genes from the Lysin Motif Receptor-Like Kinase family (LysM-RLK) which are able of binding the structural LCO and CO components. However, at the beginning of my PhD, we had no evidence allowing to conclude about the involvement of LCOs, COs, or LysM-RLKs in the AMS establishment. During my thesis, I aimed to understand the role the LCOs and their plant receptors in AMS. For this, I used on a dicotyledon (the tomato: Solanum lycopersicum) and on a monocotyledon (Brachypodium distachyon that is a model for wheat). In order to identify the LCO receptors in these two species, I used a reverse genetic approach. Then I determined these receptors affinity for various LCO structures. I showed that in tomato, LCO perception is important for AMS establishment. In addition, I have studied the symbiosis between rhizobium-type bacteria and plants of the legume family. Interestingly, the establishment of this symbiosis requires LCO synthesis by rhizobia and LCO perception by the plant via receptors of the LysM-RLK family. The fact that rhizobium-legume symbiosis shares similarities with the AMS led us to ask whether the LCO receptors involved in AMS (a much more ancient symbiosis than the rhizobium-legume symbiosis) have been recruited during evolution for a role in the rhizobium-legume symbiosis. I demonstrated that the LysM-RLKs involved in AMS in the above mentioned non-legume species are functional for the rhizobium-legumes establishment in a legume species.
|
2 |
Characterization of Populus x canescens LysM-Receptor Like Kinases LYK4/LYK5 and LysM-Receptor Like Protein LYM2 and their Roles in Chitin SignalingAwwanah, Mo 02 March 2020 (has links)
No description available.
|
3 |
ARRESTED AND CHAINED: The role of AmiB and AmiC in Pseudomonas aeruginosa daughter cell separationAl-Saigh, Sarra 10 1900 (has links)
<p>Peptidoglycan (PG) remodelling and cell division are two important cellular processes that are the major target of antibiotics. Due to rising resistance, the need for new antibiotics today has never been greater. Therefore it is important to fill the gaps in our understanding of these two important processes in order to discover new and promising antibiotic targets. Peptidoglycan synthesis and remodelling is a highly coordinated event that involves a wide number of enzymes and processes which are not well understood. N-acetylmuramoyl-L-alanine amidases, whose function is to cleave the amide linkage between the stem peptides and the lactyl moiety of N-acetylmuramic acid, is a major class of PG-active proteins. Their role in daughter cell separation during cell division is well established in <em>Escherichia coli</em> however little is known about it in other systems. Using enzymatic assays we characterize AmiC as a novel amidase in <em>Pseudomonas aeruginosa. </em>Through mutational analysis and microscopy we show that AmiB and AmiC are required for daughter cell separation. A deletion of both enzymes results in a cell chaining phenotype with abnormal cell morphology. Transmission electron microscopy reveals that the double mutant is arrested at the septal peptidoglycan separation step. In addition to cell chaining, the ∆<em>amiB/amiC</em> mutant exhibits a significant increase in susceptibility to antibiotics. We also demonstrate that the LysM motif of AmiB is not required for its role in cell separation. Furthermore, the <em>amiB</em> mutant has significantly shorter cells than the wildtype indicating an additional role for the enzyme in the cell. Lastly, through a novel bioinformatics strategy we identify PA5047 as a potential PG amidase.</p> / Bachelor of Science (BSc)
|
4 |
Identification du xyloglucane comme nouvel éliciteur oligosaccharidique stimulant l’immunité de Vitis vinifera et d’Arabidopsis thaliana et caractérisation de deux récepteurs aux chito-oligosaccharides chez la vigne (VvLYK1-1 et VvLYK1-2) / Identification of the cell-wall derived xyloglucan as a new damage-associated molecular pattern (DAMP) eliciting plant immunity in Vitis vinifera and Arabidopsis thaliana and characterization of two chito-oligosaccharide pattern recognition receptorsClaverie, Justine 21 December 2018 (has links)
L’activation des réponses immunitaires des plantes repose sur la reconnaissance de motifs moléculaires associés aux pathogènes (aussi appelés PAMP) par des récepteurs de l’immunité, également nommés PRR (pattern recognition receptors). La chitine, principal composant de la paroi des champignons, est un PAMP bien caractérisé qui induit des réponses de défense aussi bien chez les mammifères que chez les plantes.La première partie de cette étude met en évidence que deux chito-oligosaccharides, la chitine et le chitosan, agissent comme des PAMP chez la vigne (Vitis vinifera) puisqu’ils induisent des évènements précoces de signalisation, l’expression de gènes de défense et une résistance contre des agents pathogènes. Ces résultats suggèrent que des systèmes de perception existent chez la vigne. Une analyse phylogénétique a permis d’identifier trois récepteurs kinases à domaine LysM (LysM-RK ou LYK) chez V. vinifera (VvLYK1-1, -2, -3) appartenant au même clade que le récepteur à la chitine chez Arabidopsis et nommé AtCERK1 (Arabidopsis thaliana Chitin Elicitor Receptor Kinase 1). Leur analyse fonctionnelle a été réalisée par complémentation du mutant d’Arabidopsis Atcerk1, affecté dans la perception de la chitine. Nos résultats montrent que VvLYK1-1 et VvLYK1-2, mais pas VvLYK1-3, complémentent fonctionnellement le mutant Atcerk1 en restaurant l’activation des MAPK (Mitogen-Activated Protein Kinases) et l’expression de gènes de défense induits par les chito-oligosaccharides. De plus, l’expression de VvLYK1-1 chez Atcerk1 restaure la résistance basale à l’agent de l’oïdium de la vigne (Erysiphe necator).La seconde partie du projet s’est focalisée sur les éliciteurs oligosaccharidiques de type « damage-associated molecular patterns (DAMP) ». Ces molécules endogènes peuvent provenir de la dégradation de la paroi lors d’une attaque et sont capables d’activer les réponses immunitaires de la plante. Les DAMP les mieux caractérisés actuellement sont les oligogalacturonates (OG), des fragments de pectine qui induisent des réponses immunitaires chez de nombreuses espèces végétales dont l’activation de MAPK, la production d’H2O2, l’expression de gènes de défense et le dépôt de callose. Nous avons montré dans cette étude que les xyloglucanes (Xh), des fragments d’hémicellulose pariétale purifiés, induisaient l’activation de MAPK et l’expression de gènes de défense chez la vigne et Arabidopsis, afin d’induire une résistance contre le champignon nécrotrophe Botrytis cinerea. Les Xh induisent également la production de resvératrol, une phytoalexine majoritaire chez la vigne, et un dépôt de callose chez Arabidopsis. Par une approche génétique, nous avons identifié certains composants de la signalisation induite par les Xh chez Arabidopsis. L’utilisation de mutants suggère que la résistance induite par les Xh contre B. cinerea est dépendante des voies de la camalexine, de l’acide salicylique, de l’acide jasmonique et de l’éthylène chez Arabidopsis. De manière globale, nos résultats mettent en lumière que les xyloglucanes peuvent être considérés comme de nouveaux éliciteurs de l’immunité chez la vigne et Arabidopsis. / Activation of the plant immune responses requires recognition of common pathogen-associated molecular pattern (PAMP) by their cognate pattern recognition receptors (PRR). Chitin, a major component of fungal cell walls, is a well-known PAMP that triggers defense responses in several mammal and plant species.In the first part of this study, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signaling events, defense gene expression, and resistance against pathogens. These two PAMPs are active in grapevine suggesting that at least one perception system exists. Phylogenetic analysis clearly distinguished three V. vinifera LysM Receptor Kinases (VvLYK1-1, -2, -3) located in the same clade as the Arabidopsis Chitin Elicitor Receptor Kinase 1 (AtCERK1), which mediates chitin-induced immune responses. Their functional characterization was achieved by complementation assays in the Atcerk1 mutant, impaired in chitin perception. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the loss of AtCERK1 function by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator).The second part of this study focused on damaged-associated molecular patterns (DAMP), endogenous molecules that can be released from the plant cell wall during an attack and activate the plant innate immunity. Until now, the best characterized DAMPs are oligogalacturonides (OG) coming from pectin fragments that induce innate immune responses in various plant species, including MAPK activation, H2O2 production, defense gene expression and callose deposition. In this study, we showed that purified xyloglucans (Xh), derived from the plant cell wall hemicellulose, elicit MAPK activation and immune gene expression in grapevine (V. vinifera) and Arabidopsis to trigger induced resistance against the necrotrophic fungus Botrytis cinerea. Xh also elicit the production of resveratrol, the main grapevine phytoalexin, and callose deposition in Arabidopsis. Using a genetic approach, we identified some signaling components of Xh-induced immunity. The use of Arabidopsis mutants suggests that Xh-induced resistance against B. cinerea is dependent on the camalexin, salicylate, jasmonate and ethylene pathways. Taken together, our data highlight that Xh can be considered as new elicitors of grapevine and Arabidopsis immunity.
|
5 |
Studies on legume receptors for Nod and Myc symbiotic signals / Etude des récepteurs des signaux symbiotiques Nod et Myc chez les légumineusesMalkov, Nikita 12 May 2015 (has links)
Les symbioses rhizobienne et mycorhizienne à arbuscules sont deux endosymbioses racinaires jouant des rôles importants dans le développement des plantes en améliorant leur nutrition minérale. Les lipo-chitooligosaccharides (LCOs), produits par les bacteries Rhizobia et les champignons mycorhiziens, sont essentiels pour l'établissement de la symbiose rhizobienne et stimulent la mycorhization. Chez la légumineuse Medicago truncatula, trois récepteurs-like kinase à motifs lysin (LysM), LYR3, NFP et LYK3 sont impliqués dans la perception des LCOs. Le travail présenté a eu pour objectif la caractérisation biochimique de ces récepteurs et leurs applications potentielles. Les orthologues de LYR3 de M. truncatula ont été clonés et se sont tous révélés, à l'exception de celui du lupin, capables d'établir une interaction d'affinité élevée avec les LCOs mais pas avec les chitooligosaccharides de structure apparentée. Afin de mieux comprendre les bases moléculaires de la reconnaissance des LCOs, des échanges de domaine entre les protéines LYR3 de lupin et de Medicago ont été effectués et ont révélé l'importance du troisième domaine LysM dans l'interaction. L'exploitation des capacités de reconnaissance des LCOs par LYR3 à des fins biotechnologiques a été évaluée à l'aide de récepteurs chimériques constitués du domaine extracellulaire de LYR3 et du domaine kinase des récepteurs immunitaires AtCERK1 et EFR. Il est apparu que LYR3 peut être utilisé pour élaborer des récepteurs chimériques mais leur mode d'activation reste à optimiser. Enfin l'étude des deux récepteurs symbiotiques NFP et LYK3 suggère qu'ils sont régulés par phosphorylation suite au traitement par les signaux symbiotiques. L'ensemble de ce travail apporte un éclairage nouveau sur les mécanismes de perception des LCOs et sur les modifications associées à leurs récepteurs qui en résultent. / Arbuscular mycorrhization and rhizobial nodulation are two major root endosymbioses which play important roles in plant development by improving their mineral nutrition. Produced by Rhizobia bacteria and mycorrhizal fungi, lipo-chitooligosaccharides (LCOs) were shown to be essential for the formation of the rhizobial symbiosis and to have stimulatory effects on mycorrhization. In the legume Medicago truncatula three lysin motif (LysM) receptor-like kinases LYR3, NFP and LYK3 have been shown to be involved in LCO perception. Here work is presented aimed at the biochemical characterization and application of these important receptor proteins. Cloned from several legume species orthologs of M. truncatula LYR3, except from lupin, were shown to bind LCOs with high affinity, but not structurally-related chitooligosaccharides (COs). Domain swaps between the lupin and Medicago proteins were used as a tool to decipher the molecular basis of LCO recognition and revealed the importance of the third LysM domain for LCO binding. The possibility of exploiting the LCO-binding capacity of LYR3 in biotechnology, through the composition of chimeric receptors, was investigated by combining together the extracellular domain of LYR3 protein with the kinases of Arabidopsis thaliana immune receptors, AtCERK1 and EFR. The results suggest that LYR3 could be used for constructing biologically active chimeric proteins whose mode of activation needs to be improved. Finally studies on the two LysM symbiotic receptors NFP and LYK3 suggest that they are regulated by changes in their phosphorylation after symbiotic treatments. Together this work brings light on the mechanisms underlying LCO perception and the modifications that receptors undergo after their treatment with LCO.
|
6 |
Multiomics study of Pochonia chlamydosporia tritrophic lifestyleSuarez-Fernandez, Marta 29 April 2021 (has links)
En esta tesis doctoral se estudia el modo de vida tritrófico del hongo nematófago Pochonia chlamydosporia utilizando técnicas "multiómicas". Pochonia chlamydosporia (= Metacordyceps chlamydosporia) (Goddard) Zare y Gams es un hongo nematófago usado para el control de nematodos agalladores de la raíz (Meloidogyne spp.) (Forghani and Hajihassani, 2020), entre otros. P. chlamydosporia se distribuye por todo el mundo y tiene un modo de vida tritrófico, pudiendo también adoptar estilos de vida endófito y saprófito. El mecanismo que utiliza P. clamydosporia para infectar huevos de nematodo comprende la desacetilación de la quitina de su pared celular a quitosano para facilitar su degradación por quitosanasas (Aranda-Martinez et al., 2016). El quitosano es un biopolímero derivado de la quitina que también se encuentra en el exoesqueleto de artrópodos y crustáceos. El genoma de P. chlamydosporia codifica un elevado número de quitosanasas, gracias a las cuales es resistente a quitosano y puede utilizarlo como fuente de nutrientes (Palma-Guerrero et al., 2010). Ambos pueden combinarse para el control de plagas. En este trabajo de tesis doctoral se pretende estudiar mediante metabolómica, transcriptómica y genómica el modo de vida tritrófico de P. chlamydosporia añadiendo quitosano, para determinar los mecanismos de interacción del hongo en ese entorno. En último término, se pretende sentar las bases para desarrollar un sistema para reducir plagas y enfermedades de forma sostenible.
|
7 |
Role of Bb-elicited IL-10 in Suppression of Innate Immune Responses within Murine Skin TissueMoledina, Muhammed Saad Abdul Aziz 05 September 2019 (has links)
No description available.
|
Page generated in 0.3449 seconds