• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de ARHGAP19, une nouvelle GAP de Rho impliquée dans la mitose des Lymphocytes T / Characterization of ARHGAP19, a Novel Rho GAP Involved in T-Cell Mitosis

Petit, Dominique 02 February 2016 (has links)
Dans le but de déterminer le rôle des Rho GTPases et de leurs régulateurs dans les cellules hématopoïétiques, une analyse des niveaux d’expressions de 300 gènes codant pour des protéines impliquées dans les voies de signalisation dépendantes de Rho a été faite à partir d’échantillons de patients atteints de leucémies de type T-ALL. Il a ainsi pu être mis en évidence qu’un groupe de gènes incluant notamment RacGAP1, Ect2, Citron et ARHGAP19 variaient parallèlement. A l’exception de ARHGAP19, ces gènes avaient une fonction connue au cours de la mitose. Il a donc été entrepris de caractériser ARHGAP19 qui, d’après les banques de données, est spécifique du système hématopoïétique, et pour laquelle aucune fonction n’avait encore été déterminée.Afin de déterminer la fonction biologique de GAP19, un anticorps a été généré. Cet outil nous a permis de montrer que l’expression de la protéine est régulée au cours du cycle cellulaire et que sa localisation varie au cours de la mitose. Par ailleurs, nous avons montré que GAP19, joue un rôle essentiel dans le changement de forme des lymphocytes en mitose, la ségrégation des chromatides sœurs et le recrutement membranaire des effecteurs de RhoA au cours de la mitose. Nous avons aussi mis en évidence le mécanisme par lequel GAP19 permet le changement de forme dans les lymphocytes.Nous avons aussi montré que GAP19 est phosphorylée par CDK1 sur deux résidus présents dans la partie C-Terminale. Afin de mettre en évidence le rôle de ces phosphorylations, nous avons généré des cellules Kit225 transfectées avec des plasmides pour les formes non-phosphorylables de la protéine. Ceci nous a permis de mettre en évidence que la phosphorylation des résidus T404 et T476 permet la localisation cytoplasmique de GAP19 en début de mitose. Nous avons aussi pu observer lors de l’anaphase la formation de ponts de chromatines, ainsi qu’une augmentation significative de cellules multinucléées. Par ailleurs, nous avons procédé à des expériences de cytogénétique et d’immunofluorescence afin de déterminer, si les ponts de chromatines avaient pour origine soit des défauts de condensation de la chromatine, soit un stress réplicatif.Enfin, un possible modèle de la protéine ARHGAP19 a été généré et des simulations de dynamiques moléculaires réalisées afin de comprendre le rôle des phosphorylations par CDK1 a un niveau structurel. / In an attempt to understand the role of Rho GTPases and their regulators in hematopoietic cell lines, expression levels of 300 genes were analyzed for proteins involved in Rho dependent signaling pathways from patients with T-ALL leukemia.It was shown that a group of genes consisting of RacGAP1, Ect2 and Citron varied concomitantly. With the exception of ARHGAP19, all already had a known function during mitosis. Consequently, it was decided to characterize ARHGAP19, which according to databases is specific of hematopoietic cell lines, and whose function was unknown. In order to determine the biological function of ARHGAP19, a specific antibody has been generated. This allowed us to demonstrate that the level of expression of the protein vary during the cell cycle and its localization varies during mitosis. In addition, we have shown that ARHGAP19 plays a central role in regulating cell shapes changes, sister chromatids segregation and RhoA effectors membrane recruitment during mitosis. We have also shown that this occurs by a previously undescribed pathway involving RhoA-ROCK-Vimentin.Finally, we have demonstrated that ARHGAP19 is a substrate of CDK1. It is phosphorylated on two residues located in the C-Terminal region of the protein. For investigating the role of these phosphorylations, we have generated Kit225 cell lines transfected with plasmids coding for the non-phosphorylable forms of the protein. This allowed us to show that phosphorylation of residue T404 and T476 are involved preventing GAP19 recruitment at the equatorial cell cortex during mitosis.In addition, we have observed the formation of chromatin bridges, as well as an increase in multinucleated cells. Thus, we have performed cytogenetic experiments for determining if chromatin bridges are due to chromosome condensation defects, or replicative stress. Finally, a possible tertiary structure of ARHGAP19 has been created de novo, and molecular dynamics simulations were generated in order to understand the role of these phosphorylations by CDK1 at a structural level.
2

The role of Rho5 in oxidative stress response and glucose signalling in Saccharomyces cerevisiae

Sterk, Carolin Christin 03 June 2021 (has links)
Rho-GTPases are essential signalling proteins which regulate a multitude of central cellular processes that are vital for organisms to thrive and adapt to changing environments. Many regulatory networks involving Rho proteins have first been elucidated in the model yeast Saccharomyces cerevisiae, in which Rho5 emerges as a central hub connecting different signalling pathways, such as the responses to cell wall stress, high medium osmolarity, and oxidative stress. In this work, the rapid translocation of Rho5 to mitochondria as reaction to oxidants and glucose starvation was thoroughly investigated. The studies on structure-function relationships was focussed on the C-terminal region of the Rho5 which in other Rho-type GTPases determines their spatio-temporal distribution and contributes to their physiological function. The C-terminal end of these GTPases is considered to be a hypervariable region (HPR) that consists of a polybasic region (PBR) and its preceding amino acid residues, followed by the CAAX motif which becomes prenylated at its cysteine residue. These motifs are conserved in the yeast Rho5 where the PBR contains a serine residue as a putative phosphorylation target. Moreover, Rho5 of S. cerevisiae is characterized by an extension preceding the PBR that comprises 98 amino acid residues. While substitutions of the serine residue within the PBR for either phosphomimetic or non-phosphorylatable residues indicate that it is of minor physiological importance, deletion analyses of the yeast-specific extension showed that it is required for proper localization of Rho5 to the plasma membrane. As expected, substitution of the cysteine residue within the CAAX motif also prevented proper plasma membrane localization, accompanied by a loss of function both with respect to oxidative stress response and glucose starvation. Results from studies employing a trapping-device of GFP-Rho5 to the mitochondrial surface indicate that the GTPase needs to be activated at the plasma membrane by its dimeric GDP/GTP exchange factor (GEF) which is composed of Dck1 and Lmo1, in response to stress conditions. The trimeric DLR complex is then capable of rapidly translocate to mitochondria and fulfil its functions at the organelle. This view was supported by the finding that a constitutively active Rho5 variant restored function when trapped to mitochondria. Interestingly, Rho5 requires the dimeric GEF for the translocation process under oxidative stress while Dck1 and Lmo1 can reach the mitochondria independent from each other. Finally, the human Rho5 homolog Rac1 cannot complement the defects of a rho5 deletion and does not show a proper intracellular distribution, unless its C-terminal end is equipped with the yeast-specific extension. Taken together, the results of this thesis contributed to a better understanding of the structure-function relationships of Rho5 and its human homolog Rac1.

Page generated in 0.0504 seconds