• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 10
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Einfluss des clostridialen C3 Toxins auf die Dendritenmorphologie und Spinebildung von CA1 Pyramidenzellen in Hippocampus-Schnittkulturen der Maus - eine quantitative lichtmikroskopische Untersuchung

Hintze, Thorsten 05 October 2010 (has links)
Lokale Pyramidenzellen sind die Hauptneurone des Hippocampus und können durch ihre Position und die Morphologie ihrer Dendriten als CA1 und CA3 Pyramidenzellen identifiziert werden. Die Dendriten der exzitatorischen Pyramidenzellen sind mit postsynaptischen Vorwölbungen, den so genannten Spines, bedeckt, welche in einem spezifischen Verteilungsmuster angeordnet sind. Neurotoxine wie das C3 Toxin von Clostridium botulinum sind funktionelle Substanzen, die die neuronale Morphologie verändern und die neuronale Funktion beeinflussen können. In dieser Studie wurden die morphologischen Veränderungen von intrazellulär mit Biocytin gefüllten CA1 Pyramidenzellen qualitativ und quantitativ analysiert. Die hippocampalen Schnittkulturen, in denen sich bekanntermaßen Pyramidenzellen ähnlich entwickeln wie in vivo, wurden dazu herangezogen, die Effekte der C3bot Toxin-Applikation auf die Verzweigung der Dendriten sowie Anzahl und Dichte der dendritischen Spines zu untersuchen. Drei Gruppen von Zellen wurden verglichen: Erstens Neurone, die in serumhaltigem Medium inkubiert worden waren, zweitens Nervenzellen, die in einem Medium ohne Serum inkubiert worden waren und drittens Zellen, die unter Serumentzug dem C3bot Toxin ausgesetzt worden waren. Die Inkubation dauerte 14 Tage, während die Dauer der Toxinexposition zwischen vier und sechs Stunden betrug. Mit Hilfe eines Computers wurden zweidimensionale Nachbildungen der biocytin-markierten CA1 Pyramidenzellen erstellt, und die Gesamtlänge der Dendriten, die Anzahl der dendritischen Verzweigungspunkte und die Gesamtzahl und Dichte der dendritischen Spines gemessen und statistisch ausgewertet. Signifikante Unterschiede wurden zwischen der mit C3 Toxin behandelten Gruppe und der serumhaltig inkubierten Kontrollgruppe beobachtet. Diese signifikanten morphologischen Veränderungen traten selektiv an den Apikaldendriten der toxinbehandelten CA1 Pyramidenzellen auf. Aus der Behandlung resultierte eine Reduktion der Anzahl apikaler Verzweigungspunkte, der Anzahl der apikalen Spines, der Gesamtzahl (basal und apikal addiert) der Spines sowie der Gesamtspinedichte. Im Gegensatz dazu ergaben sich keine signifikanten Unterschiede zwischen der toxinbehandelten Gruppe und der ohne Serum inkubierten Kontrollgruppe, obwohl der Serumentzug im Vergleich zur serumhaltig inkubierten Kontrollgruppe die Entwicklung der Zellen beeinflusste. Auf Grundlage der beobachteten Veränderungen können wir schließen, dass die Behandlung mit C3 bot einen starken Einfluss selektiv auf die Morphologie der Apikaldendriten ausübt. Der Mechanismus, der dieser selektiven Empfindlichkeit der Apikaldendriten gegenüber dem C3 bot Toxin zugrunde liegt, wird Gegenstand weiterer Untersuchungen sein.
12

Rho GTPase family members in establishment of polarity in C. elegans embryos / Mitglieder der Rho GTPasen Familie in der Etablierung der Polarität in C. elegans Embryonen

Schonegg, Stephanie 10 January 2006 (has links) (PDF)
Cell polarity is required for asymmetric division, a mechanism to generate cell diversity by distributing fate determinants unequally to daughter cells. The establishment of polarity requires the evolutionarily conserved partitioning-defective (PAR) proteins as well as the actin cytoskeleton. In Caenorhabditis elegans one-cell embryos, the PAR proteins are segregated into an anterior (PAR-3, PAR-6) and a posterior (PAR-1, PAR-2) corticaldomain. The formation of PAR polarity correlates with anterior-posterior differences in the contractile activity of the cortex, known as "contractile polarity". It is thought that regulation of contractile polarity controls the establishment of PAR polarity, but detailed evidence to support this idea is lacking. To investigate how modulation of the actomyosin cytoskeleton affects polarity establishment, the acto-myosin cytoskeleton was perturbed by RNA-mediated interference (RNAi) of two Rho GTPases, CDC-42 and RHO-1. To examine how Rho GTPases are implemented in actin remodeling, it is important to analyze how their activity is controlled and how different activities affect polarity formation. The role of two putative Rho GTPase regulators, the Rho GTPase exchange factor (GEF) ECT-2 and the Rho GTPase activating protein (GAP) K09H11.3 were analyzed with respect to polarity formation. The formation of polarity was analyzed by using GFP-labeled proteins, and several different tracking methods were used to investigate the establishment of contractile and PAR polarity in more detail.This study demonstrates that both RHO-1 and CDC-42 are involved in polarity establishment in C. elegans embryos. But importantly, both act by different mechanisms. RHO-1 organizes the acto-myosin cytoskeleton into a contractile network, and therefore is essential for the formation of contractile polarity. The organization of the acto-myosin cytoskeleton is critical to ensure proper PAR protein distribution. Furthermore, a balance of RHO-1 activity by the GEF ECT-2 and the GAP K09H11.3 appears to be important for cortical contractility, for PAR protein domain size and for mutual exclusion of the PAR proteins. Although CDC-42 was shown to be a universal regulator of the actin cytoskeleton, CDC-42 acts downstream of contractile polarity. CDC-42 is required for linking PAR-6 to the cortex. In the absence of RHO-1 and ECT-2, PAR-6 and CDC-42 are not localized to the anterior cortex. This suggests that RHO-1, by organizing the actomyosin cytoskeleton into a contractile network, regulates the segregation of CDC-42 to the anterior cortex, and concomitantly PAR-6 localization. This study shows that the distribution of PAR is related to cortical activity and supports the model that the actin cytoskeleton plays an important role in polarity establishment.
13

Rho GTPase family members in establishment of polarity in C. elegans embryos

Schonegg, Stephanie 29 November 2005 (has links)
Cell polarity is required for asymmetric division, a mechanism to generate cell diversity by distributing fate determinants unequally to daughter cells. The establishment of polarity requires the evolutionarily conserved partitioning-defective (PAR) proteins as well as the actin cytoskeleton. In Caenorhabditis elegans one-cell embryos, the PAR proteins are segregated into an anterior (PAR-3, PAR-6) and a posterior (PAR-1, PAR-2) corticaldomain. The formation of PAR polarity correlates with anterior-posterior differences in the contractile activity of the cortex, known as "contractile polarity". It is thought that regulation of contractile polarity controls the establishment of PAR polarity, but detailed evidence to support this idea is lacking. To investigate how modulation of the actomyosin cytoskeleton affects polarity establishment, the acto-myosin cytoskeleton was perturbed by RNA-mediated interference (RNAi) of two Rho GTPases, CDC-42 and RHO-1. To examine how Rho GTPases are implemented in actin remodeling, it is important to analyze how their activity is controlled and how different activities affect polarity formation. The role of two putative Rho GTPase regulators, the Rho GTPase exchange factor (GEF) ECT-2 and the Rho GTPase activating protein (GAP) K09H11.3 were analyzed with respect to polarity formation. The formation of polarity was analyzed by using GFP-labeled proteins, and several different tracking methods were used to investigate the establishment of contractile and PAR polarity in more detail.This study demonstrates that both RHO-1 and CDC-42 are involved in polarity establishment in C. elegans embryos. But importantly, both act by different mechanisms. RHO-1 organizes the acto-myosin cytoskeleton into a contractile network, and therefore is essential for the formation of contractile polarity. The organization of the acto-myosin cytoskeleton is critical to ensure proper PAR protein distribution. Furthermore, a balance of RHO-1 activity by the GEF ECT-2 and the GAP K09H11.3 appears to be important for cortical contractility, for PAR protein domain size and for mutual exclusion of the PAR proteins. Although CDC-42 was shown to be a universal regulator of the actin cytoskeleton, CDC-42 acts downstream of contractile polarity. CDC-42 is required for linking PAR-6 to the cortex. In the absence of RHO-1 and ECT-2, PAR-6 and CDC-42 are not localized to the anterior cortex. This suggests that RHO-1, by organizing the actomyosin cytoskeleton into a contractile network, regulates the segregation of CDC-42 to the anterior cortex, and concomitantly PAR-6 localization. This study shows that the distribution of PAR is related to cortical activity and supports the model that the actin cytoskeleton plays an important role in polarity establishment.

Page generated in 0.0487 seconds