• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 14
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Induction of the isthmic organizer and specification of the neural plate border /

Patthey, Cédric, January 2008 (has links)
Diss. (sammanfattning) Umeå : Univ., 2008. / Härtill 3 uppsatser.
12

Function of the Zinc-Finger Repressor NLZ in the Developing Zebrafish Hindbrain: a Dissertation

Runko, Alexander Peter 06 October 2003 (has links)
Generation of the primitive neuroectoderm into specialized brain subdivisions, such as the hindbrain primordium, involves the regulated coordination of complex morphogenetic and molecular mechanisms. These processes are evident in the segregation of the zebrafish hindbrain into seven distinct lineage-restricted compartments, termed rhombomeres (r), which are established by the interplay of several spatially-restricted expressed genes. These include transcription factors, members of specific signaling pathways and specialized molecules that mediate cell adhesion and identity. Despite their extensive characterization, it is evident that other genes are involved to mediate the proper specification and segregation of individual rhombomeres. One candidate that likely fits this role is related to the no ocelli/l(2)35Ba gene in Drosophila, termed nlz (nocA-like zinc-finger). Nlz-related proteins behave as transcriptional repressors and are related to the vertebrate Sp1-like family of transcription factors. nlz is dynamically expressed in the zebrafish hindbrain, residing in the caudal hindbrain at gastrula stages and rostrally expanding from presumptive r3/r4 boundary to encompass r3 and r2 at segmentation stages. Nlz localizes to the nucleus and associates with the co-repressors Groucho and histone deacetylases, suggesting that Nlz acts as a repressor. Consistent with this, misexpression of nlz into zebrafish embryos results in a loss of gene expression in the rostral hindbrain (rl-r3). Taken together, the findings in this thesis suggest that Nlz functions as a transcriptional repressor to control segmental gene expression in the rostral hindbrain.
13

Regulation of Zebrafish Hindbrain Development by Fibroblast Growth Factor and Retinoic Acid: A Dissertation

Roy, Nicole Marie 01 October 2003 (has links)
Fibroblast growth factor (Fgf) and Retinoic acid (RA) are known to be involved in patterning the posterior embryo. Work has shown that Fgf can convert anterior tissue into posterior fates and that embryos deficient in Fgf signaling lack posterior trunk and tail structures. Likewise, studies performed on RA have shown that overexpression of RA posteriorizes anterior tissue, while disrupting RA signaling yields a loss of posterior fates. While it appears these signals are necessary for posterior development, the role Fgf and RA play in development of the hindbrain is still enigmatic. A detailed study of the requirements for Fgf and RA in the early vertebrate hindbrain are lacking, namely due to a deficiency in gene markers for the presumptive hindbrain at early developmental stages. In this study, we make use of recently isolated genes, which are expressed in the presumptive hindbrain region at early developmental stages, to explore Fgf and RA regulation of the early vertebrate hindprain. We employed both overexpression and loss of function approaches to explore the role of Fgf in early vertebrate development with an emphasis on the presumptive hindbrain region in zebrafish embryos. By loss of function analysis, we show that Fgf regulates genes expressed exclusively in the hindbrain region (meis3 and hoxbla) as well as genes whose expression domains encompass both the hindbrain and more caudal regions (nlz and hoxb1b), thus demonstrating a requirement for Fgf signaling throughout the anteroposterior axis of the hindbrain (rostral to caudal hindbrain) by mid-gastrula stages. To further characterize early gene regulation by Fgf, we utilized an in vitro system and found that Fgf is sufficient to induce nlz directly and hoxb1b indirectly, while it does not induce meis3 or hoxb1a. Furthermore, in vivo work demonstrates that Fgf soaked beads can induce nlz and hoxb1b adjacent to the bead and meis3at a distance. Given the regulation of these genes in vitro and in vivo by Fgf and their position along the rostrocaudal axis of the embryo, our results suggest an early acting Fgf resides in the caudal end of the embryo and signals at a distance to the hindbrain. We detect a similar regulation of hindbrain genes by RA at gastrula stages as well, suggesting that both factors are essential for early hindbrain development. Interestingly however, we find that the relationship between Fgf and RA is dynamic throughout development. Both signals are required at gastrula stages as disruption of either pathway alone disrupts hindbrain gene expression, but a simultaneous disruption of both pathways at later stages is required to disrupt the hindbrain. We suggest that Fgf and RA are present in limiting concentrations at gastrula stages, such that both factors are required for gene expression or that one factor is necessary for activation of the other. Our results also reveal a changing and dynamic relationship between Fgf and RA in the regulation of the zebrafish hindbrain, suggesting that at segmentation stages, Fgf and RA may no longer be limiting or that they are no longer interdependent. As we have demonstrated that an early Fgf signal is required for gastrula stage hindbrain development, we next questioned which Fgf performed this function. We have demonstrated that the early Fgf signal required for hindbrain development is not Fgf3 or Fgf8, two Fgfs known to be involved in signaling centers at the mid-hindbrain boundary (MHB) and rhombomere (r) 4. We further show that two recently identified Fgfs, Fgf4 and Fgf24 are also insufficient alone or in combination with other known Fgfs to regulate hindbrain gene expression. However, as Fgfs may act combinatorially, we do not rule out the possibility of their involvement in early hindbrain gene regulation. However, as time passes and additional Fgfs are isolated and cloned, the elusive Fgf signal required for early hindbrain development will likely be identified. Taken together, we propose that an early acting Fgf residing in the caudal end of the embryo regulates hindbrain genes together with RA at gastrula stages. We suggest that both Fgf and RA are required for gene expression at gastrula stages, but this requirements changes over time as Fgf and RA become redundant. We also demonstrate that the Fgf required for gastrula stage hindbrain development has yet to be identified.
14

Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain

Vázquez Echeverría, Citlali 18 December 2008 (has links)
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex threedimensional structure. To achieve this complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tisúes surrounding the otic primordium, and more particularly the adjacent segmented hindbrain, have been implicated in specifying structures along the anteroposterior and dorsoventral axes of the inner ear. In this work we have first characterized the generation and axial specification of the otic neurogenic domain, and second, we have investigated the effects of the mutation of kreisler/MafB -a gene transiently expressed in the rhombomeres 5 and 6 of the developing hindbrain- in early otic patterning and cell specification. We show that kr/kr embryos display an expansion of the otic neurogenic domain, due to defects in otic patterning. Although many reports have pointed to the role of FGF3 in otic regionalization, we provide evidence that FGF3 is not sufficient to govern this process. Neither Krox20 nor Fgf3 null mutant embryos, in which Fgf3 is either downregulated or absent in r5 and r6, present ectopic otic neuroblasts in the otic primordium. However, Fgf3-/-Fgf10-/- double mutants show a phenotype very similar to kr/kr embryos: they present ectopic neuroblasts along the AP and DV otic axes. Finally, and remarkably, partial rescue of the kr/kr phenotype is obtained when Fgf3 or Fgf10 are ectopically expressed in the hindbrain of kr/kr embryos. These results highlight a compensatory mechanism between FGFs, and the importance of hindbrain-derived signals in instructing otic patterning and the establishment of the neurogenic domain.

Page generated in 0.0492 seconds