• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Littlefield Rhyolite, Eastern Oregon: Distinct Flow Units and Their Constraints on Age and Storage Sites of Grande Ronde Basalt Magmas

Webb, Brian McCulloch 14 July 2017 (has links)
The Littlefield Rhyolite consists of widespread, high-temperature, hotspot-related rhyolitic lavas that erupted in eastern Oregon contemporaneous to late-stage Grande Ronde Basalt lavas. The estimated total volume of erupted rhyolites is ~100 km3 covering ~850 km2. The focus of this study has been to investigate the stratigraphy and petrology of the Littlefield Rhyolite and whether field and geochemical relationships exist to help constrain the timing and storage sites of Grande Ronde Basalt magmas. Although often indistinguishable in the field, our data reveal that the Littlefield Rhyolite consists of two geochemically distinct rhyolite flow packages that are designated here as lower and upper Littlefield Rhyolite, according to stratigraphic relationships in the Malheur River Gorge. Rarely viewed in sequence, these rhyolites are distinguished by Zr, Ba, Nb, TiO2 and FeO contents and 40Ar/39Ar ages (16.12±0.04 and 16.16±0.10 Ma versus 16.01±0.06 and 16.05±0.04 Ma). Rhyolites known either as ‘rhyolite of Cottonwood Mountain’ or ‘rhyolite of Bully Creek Canyon’, and which are exposed around Cottonwood Mountain, northwest of Vale, have compositions similar to samples of lower Littlefield Rhyolite. Additionally, single crystal 40Ar/39Ar ages of two samples (16.12±0.07, 16.20±0.08) are statistically indistinguishable. Among units sandwiched between the lower and upper Littlefield Rhyolite are several lava flows and a one-meter thick agglutinated spatter deposit of Hunter Creek Basalt. The spatter deposit thickens to 10s of meters over a distance of 800 m where the deposit is strongly welded. We recognize this as a venting site of Hunter Creek Basalt, and that Hunter Creek Basalt is geochemically and petrographically similar to, and contemporaneous with, late-stage Grande Ronde Basalt. Ages of Littlefield Rhyolite flow units constrain the timing of eruption of Hunter Creek Basalt to an age span of ~100k years, between 16.05 – 16.12 Ma. One local variant of late-stage Grand Ronde Basalt is icelanditic (~62 wt. % SiO2) and is found at a number of places including a location near the southern extent of the upper Littlefield Rhyolite. Geochemical modeling strongly suggests that icelandite lavas resulted from mixing of Grande Ronde and upper Littlefield Rhyolite magmas, thereby tying a Grande Ronde magma storage site to within the greater Malheur River Gorge area, and indicating contemporaneity of rhyolitic and Grande Ronde magma reservoirs.
2

Rhyolitic magmatism of the High Lava Plains and adjacent Northwest Basin and Range, Oregon : implications for the evolution of continental crust

Ford, Mark T., 1973- 14 December 2011 (has links)
Understanding continental crust formation and modification is a fundamental and longstanding geologic problem. Influx of mantle-derived basaltic magma and partial melting of the crust are two ways to drive crustal differentiation. This process results in a low density upper crust and denser, more refractory lower crust, creating significant and vastly different geochemical reservoirs over time. The High Lava Plains (HLP) and Northwestern Basin and Range (NWBR) in central and eastern Oregon provide an excellent example of intraplate volcanism where we can examine the beginnings of segregation of a relatively young, recently accreted crust. The origins of continental magmatism and its relationship to plate tectonics, especially away from the continental margins, are only slowly becoming revealed. The western United States is the most volcanically active part of North America during Cenozoic time, and this activity includes the enigmatic volcanism of the HLP and NWBR. Rhyolitic volcanism in the HLP and NWBR is age-progressive but in a direction that is nearly perpendicular to North American Plate motion. Despite being erupted through a similar crust and with a similar composition of mafic input, the HLP province is strongly bimodal (basalt-rhyolite) while the NWBR province exhibits a continuum of compositions. High silica rhyolites are commonplace in the HLP, with approximately a 1:1 ratio of rhyolite to basalt, even though the crust is comprised of mafic accreted terranes. Asthenospheric flow, mantle melting and crustal extension coupled with southwesterly North American plate motion explain the age-progressive volcanism of the HLP and NWBR. Differential asthenopheric counterflow and mantle upwelling created by the down-going Cascadia slab, coupled with transtensional stresses related to the rotation of the North American plate and Basin and Range extension, decreasing to the north, can produce the observed variations in rhyolite compositions and volumes in the two adjacent provinces. These differences are caused by fundamentally different petrogenetic processes that take place in the crust. In the HLP, an increase in mantle-derived magma flux into the lower crust has created low silica rhyolite via partial melt that separated, coalesced and rose buoyantly. This low silica rhyolite may erupt, solidify in the upper crust, or differentiate by fractional crystallization to produce high-iron, high-silica rhyolite containing an anhydrous phase assemblage. In the NWBR, a smaller flux of basaltic magma, coupled with greater transtension resulted in small crustal processing zones where fractional crystallization coupled with magma mixing and recharge created a wide range of compositions. Partial melting to form rhyolites was limited. These rhyolites have lower iron, and hydrous phases (biotite, amphibole) are common. These processes modify the crust in different ways, leaving a stratified crust in the HLP but a less modified crust in the NWBR. Recent geophysical and isotopic studies bear out these differences and allow for a unified, internally consistent model for both provinces, one that relies only on partial melt generation driven by current plate movements and do not require a mantle plume contribution. The bimodal volcanism of the HLP is a direct consequence of the processes that cause the gravitational differentiation of the continental crust into upper and lower units. The model for the HLP is generally applicable to other localities that have predominantly mafic crust and a similar balance of crustal transtension and mantle-derived basaltic flux. One such place is Iceland, which has strongly bimodal (basalt – rhyolite) volcanism. In areas where silicic crust has become substantially more mafic due to a high flux of intraplated basalts, such as in the bimodal Snake River Plain, the model is also applicable. / Graduation date: 2012 / In order for the .age files to run, the add-in called ArArCalc for Excel (version 200 or 2003) must be installed. ArArCalc is available from the website Earthref.org
3

The Geology and Petrology of Enigmatic Rhyolites at Graveyard and Gordon Buttes, Mount Hood Quadrangle, Oregon

Westby, Elizabeth G. 12 December 2014 (has links)
Rhyolite lava flows are found at two dome complexes at Graveyard Butte and Gordon Butte, Mount Hood Quadrangle, Oregon. At Graveyard Butte, the White River has cut a winding canyon 150 m deep, exposing at its base, a 40-meter-thick outcrop of flow-banded rhyolite (73 wt.% SiO2, 3.67±0.01 Ma) that laterally extends along the canyon wall for about 1 km. Stratigraphically above the flow-banded rhyolite is locally-erupted iron-rich andesites (lava flows, agglutinate and other pyroclastic rocks as well as clastic debris), a rhyolitic ash-flow tuff (74 wt.% SiO2), and the 2.77±0.36 Ma tholeiitic basalt lava flows of Juniper Flat (Sherrod and Scott, 1995). Roughly 2 km downstream, a phenocryst-poor, maroon-colored rhyolite (3.65±0.01 Ma) is visible again, forming steep canyon walls for about 1.6 km. A compositionally similar silicic unit is found 18 km to the northwest of Graveyard Butte at Gordon Butte. Exposed units along Gordon Butte's Badger Creek (3.64±0.03 Ma) and the southeastern upper slopes of Gordon Butte include rhyolite flows (69.6-72.1 wt.% SiO 2). The rhyolite lava flows at Graveyard Butte and Gordon Butte's Badger Creek are nearly chemically indistinguishable and both contrast with the younger rhyolitic ash-flow tuff at Graveyard Butte and lava flows on Gordon Butte's Upper Slopes. The rhyolites of Graveyard Butte and Badger Creek are richer in Nb and Zr (30-40 ppm and 487-530 ppm, respectively) than the younger rhyolitic tuff and Upper Slopes flows (13-19 ppm and 235-364 ppm, respectively) and share characteristics with A-type granitoids. The rhyolite lavas are porphyritic (~7%) with the porphyroclasts comprising primarily individual feldspars (250-500 µm in length) with ragged margins, oscillatory zoning and less commonly, spongy cores. Other phenocrystic phases include fayalitic olivine, Fe-rich clinopyroxene, and Fe-Ti oxides. A-type-like incompatible trace-element-enriched compositions as well as mineralogical indicators suggest rhyolite lava flows at Graveyard Butte and Gordon Butte's Badger Creek are likely generated in an extensional tectonic setting. A possible geotectonic framework for generation of these rhyolite lavas is the northward propagating intra-arc rift of the Oregon Cascades.

Page generated in 0.0295 seconds