• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 29
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structural geology of a rhyolite flow in the Tucson Mountains

Champney, Richard Daniel January 1962 (has links)
No description available.
12

Storage, ascent and emplacement of rhyolite lavas

Befus, Kenneth Stephen 24 October 2014 (has links)
The physical properties and dynamic processes that control effusions of rhyolitic lavas are poorly constrained because of a paucity of direct observations. To assess the pre-eruptive storage conditions, eruptive ascent, and subaerial emplacement for a suite of volumetrically diverse rhyolitic lavas, I studied 10 obsidian lavas from Yellowstone Caldera, Wyoming and Mono Craters, California. Storage, ascent, and emplacement of those lavas were quantitatively constrained using phenocryst compositions, high temperature experiments, microlite textures, and compositional gradients surrounding spherulites. Compositions of phenocrysts and quartz-hosted glass inclusions indicate the magmas at Yellowstone were stored at 750±25 °C in the shallow crust (<7 km), in agreement with phase equilibria experiments. Following the initiation of an eruption, magma leaves the chamber and ascends in a conduit. Microlite number density can be used to quantify eruptive ascent rates. To generate the observed microlite number densities (10⁸·¹¹±⁰·⁰³) to 10⁹·⁴⁵±⁰·¹⁵ cm⁻³), the magmas decompressed at ~1 MPa hour⁻¹, equivalent to ascent rates of ~10 mm s⁻¹. Upon subaerial emplacement, microlites act as rigid particles in a deforming fluid (lava), and hence their 3D orientations could indicate flow direction and how strain accumulates in the fluid during flow. Microlites are strongly aligned in samples from all flows, but variations in alignment were found to be independent of flow volume or distance travelled. Together, those observations suggest that strains accumulated during subaerial transport must be small (<2). Instead, microlites most likely aligned in response to strain in the conduit, which can be generated by collapse and flattening. Upon reaching the surface, the cooling history and longevity of rhyolitic lavas are critical for developing models of emplacement and hazard assessment. Compositional gradients surrounding spherulites provide one method to assess such temporal characteristics. Spherulites, crystalline spheres of radiating quartz and feldspar, form by crystallization of obsidian glass in response to cooling. An advection-diffusion model was developed to simulate the growth of spherulites and compositional gradients that develop in the surrounding glass during spherulite growth. Observed gradients are consistent with spherulites growing between ~700 and ~400 °C, and cooling at rates of 10⁻⁵·²±⁰·³) °C s⁻¹. / text
13

High-silical peralkaline magmatism of the Greater Olkaria Volcanic Complex, Kenya Rift Valley

Marshall, A. Saskia January 1999 (has links)
No description available.
14

The Littlefield Rhyolite, Eastern Oregon: Distinct Flow Units and Their Constraints on Age and Storage Sites of Grande Ronde Basalt Magmas

Webb, Brian McCulloch 14 July 2017 (has links)
The Littlefield Rhyolite consists of widespread, high-temperature, hotspot-related rhyolitic lavas that erupted in eastern Oregon contemporaneous to late-stage Grande Ronde Basalt lavas. The estimated total volume of erupted rhyolites is ~100 km3 covering ~850 km2. The focus of this study has been to investigate the stratigraphy and petrology of the Littlefield Rhyolite and whether field and geochemical relationships exist to help constrain the timing and storage sites of Grande Ronde Basalt magmas. Although often indistinguishable in the field, our data reveal that the Littlefield Rhyolite consists of two geochemically distinct rhyolite flow packages that are designated here as lower and upper Littlefield Rhyolite, according to stratigraphic relationships in the Malheur River Gorge. Rarely viewed in sequence, these rhyolites are distinguished by Zr, Ba, Nb, TiO2 and FeO contents and 40Ar/39Ar ages (16.12±0.04 and 16.16±0.10 Ma versus 16.01±0.06 and 16.05±0.04 Ma). Rhyolites known either as ‘rhyolite of Cottonwood Mountain’ or ‘rhyolite of Bully Creek Canyon’, and which are exposed around Cottonwood Mountain, northwest of Vale, have compositions similar to samples of lower Littlefield Rhyolite. Additionally, single crystal 40Ar/39Ar ages of two samples (16.12±0.07, 16.20±0.08) are statistically indistinguishable. Among units sandwiched between the lower and upper Littlefield Rhyolite are several lava flows and a one-meter thick agglutinated spatter deposit of Hunter Creek Basalt. The spatter deposit thickens to 10s of meters over a distance of 800 m where the deposit is strongly welded. We recognize this as a venting site of Hunter Creek Basalt, and that Hunter Creek Basalt is geochemically and petrographically similar to, and contemporaneous with, late-stage Grande Ronde Basalt. Ages of Littlefield Rhyolite flow units constrain the timing of eruption of Hunter Creek Basalt to an age span of ~100k years, between 16.05 – 16.12 Ma. One local variant of late-stage Grand Ronde Basalt is icelanditic (~62 wt. % SiO2) and is found at a number of places including a location near the southern extent of the upper Littlefield Rhyolite. Geochemical modeling strongly suggests that icelandite lavas resulted from mixing of Grande Ronde and upper Littlefield Rhyolite magmas, thereby tying a Grande Ronde magma storage site to within the greater Malheur River Gorge area, and indicating contemporaneity of rhyolitic and Grande Ronde magma reservoirs.
15

A geologic-geochemical study of the Cat Mountain rhyolite

Bikerman, Michael, 1934- January 1962 (has links)
No description available.
16

Spatial and temporal distribution of a rhyolite compositional continuum from wet-oxidizing to dry-reducing types governed by lower-middle crustal P-T-fO₂-fH₂O conditions in the Taupo Volcanic Zone, New Zealand : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Geology at the University of Canterbury /

Deering, Chad D. January 2009 (has links)
Thesis (Ph. D.)--University of Canterbury, 2009. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
17

Geochemistry and petrogenesis of John Day ash flows near Prineville, Oregon

Patridge, Karyn Ann. January 2010 (has links) (PDF)
Thesis (M.S. in geology)--Washington State University, May 2010. / Title from PDF title page (viewed on July 9, 2010). "School of Earth and Environmental Sciences." Includes bibliographical references (p. 105-117).
18

The Magmatic Origin and Evolution of the Oxnadalur Volcanic Complex in Northern Iceland

Kaiser, Jason F 01 January 2010 (has links) (PDF)
The 8-9 million year old volcanic complex of Oxnadalur is host to large-volume basalt flows, small and large volume rhyolite ash and lava flows, and a gabbroic intrusion. Both the plagioclase and pyroxene phenocrysts of the basalt are larger in size in the younger flows. The rhyolite ashes contain no primary crystals, but numerous basalt xenoliths and pumice fragments. The rhyolite lava flows are banded, with only the oldest containing phenocrysts of sanidine and plagioclase. One rhyolite flow is a mingled hybrid of two glasses, each containing plagioclase, pyroxene, and hornblende. Whole rock major and trace element analyses indicate a mixing trend among all of the units in the complex; yet abundant xenoliths in the ashes make this less data less dependable. In situ major and trace element analyses were performed via electron microprobe show two distinct populations in the variation diagrams, with the basalts and rhyolites separated by a compositional gap. Electron microprobe analyses also show that the plagioclase of the basalts and the gabbro are normally zoned with distinct calcic cores and sodic rims; this is also true for the mingled hybrid flow. Rare earth element analyses done via laser ablation inductively coupled plasma mass spectrometry, show that the phenocrysts are enriched in the light and depleted in the heavy rare earth elements. Rare earth element abundances in the glasses have a trend similar to that of ocean island basalt rather than that of mid ocean ridge basalt. Plagioclase geothermometry and amphibole geobarometry indicate that the magma chambers were replenished by new batches of melt and may have existed at a shallow level in the crust just prior to being erupted. Oxygen isotope ratios are depleted compared to those of typical mid ocean ridge basalts, typically indicating that the source melt was partially melted from a hydrothermally altered layer in the crust. As the δ18O values are whole rock, the depletion may be the result of any sub solidus interaction with low δ18O water. The data indicate that multiple shallow reservoirs evolved separately, with limited communication while being intruded by new magma throughout the lifespan of the complex.
19

Reconnaissance Cenozoic volcanic geology of the Little Goose Creek area, northeastern Elko County, NV with an emphasis on the Jarbidge Rhyolite

Ingalls, Andrew January 1900 (has links)
Master of Science / Department of Geology / Matthew Brueseke / The Little Goose Creek area is located in Elko County, Nevada just south of the central Snake River Plain and in the northeastern Great Basin. During the Miocene, northeastern Nevada was characterized by volcanism as well as prevalent extension and basin development, including widespread occurrences of porphyritic quartz-phyric silicic lavas and domes (e.g., the Jarbidge Rhyolite), ash-flow tuffs, and basaltic volcanism. Recent workers (e.g., Colgan and Henry, 2010) have provided new constraints on the timing of extension in the northern Great Basin (U.S.A.) and indicate that much of it occurred in the mid-Miocene. Other recent work has provided new temporal and petrologic constraints on 16.1 to 15.0 Ma Jarbidge Rhyolite volcanism in the northern Great Basin west of our study area, and suggest that it is intimately linked (spatially and temporally) with the aforementioned extension. This study aims to: [1] understand the spatiotemporal link between the volcanism in the northeastern Nevada study area and potentially correlative volcanism regionally (e.g., Jarbidge Rhyolite and explosive deposits associated with the <13 Ma Bruneau-Jarbidge or Twin Falls eruptive centers); [2] determine if the sampled Jarbidge Rhyolite lavas are chemically similar to those in and around Jarbidge, Nevada. In the Goose Creek area, we report a new laser [superscript]40Ar/[superscript]39Ar age for sanidine of 13.6 ± 0.03 Ma for a crystal-poor rhyolite lava (Rock Springs Rhyolite) and a Jarbidge Rhyolite lava (13.827±0.021 Ma) as well as an age on Jarbidge Rhyolite in Wells, NV (15.249±0.040 Ma) and West Wendover, NV (13.686±0.034 Ma). These lava samples, as well as sampled ash-flow tuffs from the Goose Creek region, plot within the A-type field on discrimination diagrams. The ash-flow tuffs are younger than the Rock Springs Rhyolite based on stratigraphic relationships and are sourced from both the Twin Falls eruptive center as well as the Bruneau Jarbidge eruptive center of the central Snake River Plain based on geochemical analysis. Also, a sequence of basaltic lavas crop out in the Goose Creek drainage; these basalts have ~43 wt.% silica and are chemically similar to <8 Ma olivine tholeiite basalts that crop out to the north, along the southwestern side of the Cassia Mountains, Idaho. These results, field relationships, and prior geological mapping suggest that the lavas and ash-flow tuffs erupted into active extensional basins.
20

Spatial and temporal distribution of a rhyolite compositional continuum from wet-oxidizing to dry-reducing types governed by lower-middle crustal P-T-ƒO₂-ƒH₂O conditions in the Taupo Volcanic Zone, New Zealand.

Deering, Chad D. January 2009 (has links)
A continuum of rhyolite compositions has been observed throughout the Taupo Volcanic Zone (TVZ) over the past 550 kyr. reflecting changes in the ƒH2O, ƒO₂, and P-T conditions in a lower crustal 'hot-zone' (10-30 km) where these evolved melts are generated by crystal fractionation of successively intruded basaltic magmas. The rhyolite compositional continuum is bound by two distinct end-member types: R1 is characterized by hydrous minerals (hornblende ± biotite), low FeO*/MgO (calc-alkaline series), low MREE, Y, and Zr, and high Sr; and R2 is characterized by anhydrous minerals (orthopyroxene ± clinopyroxene), high FeO*/MgO (tholeiitic series), high MREE, Y, and Zr, and low Sr. Slab-derived aqueous fluid components (Ba, Cl) correlate well with oxygen fugacity, and other well defined characteristics of silicic magmas in the Taupo Volcanic Zone (TVZ) between a cold-wet-oxidizing magma type (R1: amphibole ± biotite; high Sr, low Zr and FeO*/MgO, depleted MREE) and a hot-dry-reducing magma type (R2: orthopyroxene ± clinopyroxene; low Sr, high Zr, and FeO*/MgO, less depleted MREE). Oxygen fugacity was obtained from analysis of Fe-Ti oxides and ranges between -0.039 to +2.054 log units (ΔQFM; where QFM = quartz + fayalite + magnetite buffer) and is positively correlated with the bulk-rock Ba/La ratio, indicating that slab-derived fluid is the oxidizing agent in the rhyolites. Chlorine contents in hornblende also correlate with the bulk-rock Ba/La ratio. Hence, high fluid-flux typically correlates with the R1 and low fluid-flux with R2 rhyolite magma types. A geochemical evolution and distribution can be tracked in time and space throughout the central region of the TVZ from 550 ka to present and has revealed two distinct magmatic cycles that vary in length. The first cycle included widespread R1 type magmatism across the central TVZ beginning ca. 550 ka and was directly associated with previously unreported dome-building and ignimbrite-forming volcanism, and led to a voluminous (>3000 km³) ignimbrite 'flare-up' between ca. 340 and 240 ka. These magmas also display the highest K₂O and Pb isotopic compositions compared to those erupted more recently, and is consistent with a peak in slab-derived sediment input. The second cycle began roughly 180 ka, erupting ca. 800 km³ of magma, and continues to the present. The duration, rate, and composition of melt production within these cycles appears to be governed by the flux of fluid/sediment released from the subducting slab, while the distribution of melts may be governed more by extension along the central rift axis. The Matahina Ignimbrite (~160 km³ rhyolite magma; 330 ka) was deposited during a caldera-forming eruption from the Okataina Volcanic Centre, TVZ. The outflow sheet is distributed primarily from the northeast to southeast and consists of a basal plinian fall member and three ash-flow members. Pumice clasts are separated into three groups defined by differences in bulk geochemistry and mineral contents: high CaO, MgO, Fe₂O₃T, TiO₂, and low Al₂O₃, +hornblende (A2), low CaO, MgO, Fe2O3T, TiO2, ±hornblende (A1), and a subset to A1, which has high-K, +biotite (B). Two types of crystal-rich mafic clasts were also deposited during the final stages of the eruption. The distinct A and B rhyolite magma types are petrogenetically related to corresponding type A and B andesitic magma by up to 50% crystal fractionation under varying ƒO₂-ƒH₂O conditions. Further variations in the low- to high-silica rhyolites can be accounted for by up to 25% crystal fractionation, again under distinct ƒO₂-ƒH₂O conditions. Reconstruction of the P-T-ƒO₂-ƒ’H₂O conditions of the andesite to rhyolite magmas are consistent with the existence of a compositional and thermal gradient prior to the eruption. Magma mingling/mixing between the basalt to andesite and main compositionally zoned rhyolitic magma occurred during caldera-collapse, modifying the least-evolved rhyolite at the bottom of the reservoir and effectively destroying the pre-eruptive gradients. A detailed examination of the diverse range of calcic-amphibole compositions from the ca. 330 ka Matahina eruption (ca. 160 km³ rhyolitic magma) of the Okataina Volcanic Complex, Taupo Volcanic Zone, including crystal-rich basalt to dacite pumice from post-collapse deposits, reveals several pre- and syn-eruption magmatic processes. (1) Amphibole phenocrysts in the basaltic-andesite and andesite crystallized at the highest pressures and temperatures (P: up to 0.6±0.06 GPa and T: up to 950°C), equivalent to mid-crustal depths (13-22 km). Inter- and intra-crystalline compositions range from Ti-magnesiohornblende → Ti-tschermakite → tschermakite → magnesiohornblende and some display gradual decreases in T from core to rim, both consistent with magma differentiation by cooling at depth. (2) The largest amphibole crystals from the basaltic-andesite to andesite display several core to rim increases in T (up to 70°C), indicating new hotter magma periodically fluxed the crystal mush. (3) The dominant population of amphibole (magnesiohornblende) from the rhyolite is small and bladed and crystallized at low P-T conditions (P: 0.3 GPa, T: 765°C), equivalent to the eruptive P-T conditions. Amphibole (tschermakite-magnesiohornblende) from the dacitic and low-silica rhyolitic pumice form two distinct populations, which nucleated at two different T (High: 820°C and Low: 750°C). These compositional variations, governed primarily by differences in T conditions during crystal growth, record the mixing of two distinct amphibole populations that approached a thermal equilibrium at the eruptive T. Therefore, the diversity in amphibole compositions can be reconciled as an exchange of crystals+liquid between the basaltic-andesite to dacite from the mid-crust and rhyolite from the upper-crust, which quenched against one another, modifying the dacite to low-silica rhyolite compositions as the eruption progressed.

Page generated in 0.0321 seconds