Spelling suggestions: "subject:"ribinės teoremas"" "subject:"ribinės teorema""
1 |
Maksimumų vidurkių analizė / Analysis of maxima meansKasperavičiūtė, Lina 11 August 2008 (has links)
Darbe nagrinėjami nepriklausomų ir vienodai pasiskirsčiusių atsitiktinių dydžių maksimumai su skirstinio funkcija F. Skaičiuojami maksimumų vidurkiai Pareto ir Buro skirstinių atveju, palyginami su tiksliomis reikšmėmis ir žinomu įverčiu. Kai imties didumas n yra didelis, naudojamos ribinės teoremos, Pareto skirstinio atveju randamas konvergavimo greičio įvertis. Taip pat skaičiuojami Buro atsitiktinių dydžių maksimumų vidurkiai, kai imties didumas N yra pasiskirstęs pagal geometrinį skirstinį. / In this work maxima of independent and identically distributed random variables with distribution function F are analyzed. We calculate maxima means for Pareto and Buro distributions and compare theoretical values with known estimates. We use limit theorems for maxima means when the set size n is large and find the estimate of convergence rate for Pareto random variables. When the set size N is geometric random number maxima means for Buro random variables are calculated.
|
2 |
Asymptotic results on nearly nonstationary processes / Beveik nestacionarių procesų asimptotiniai rezultataiMarkevičiūtė, Jurgita 29 October 2013 (has links)
We study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process and its least squares residuals Innovations are i.i.d. centered and at least square-integrable innovations. Two types of models are considered. For the first type model we prove that the limiting process depends on Ornstein – Uhlenbeck one. In the second type model, the convergence to Brownian motion is established in Hölder space in terms of the rate of coefficient and the integrability of the residuals. We also investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process . We build the alpha-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis. / Disertacijoje nagrinėjami dalinių sumų laužčių procesai sudaryti iš pirmos eilės beveik nestacionaraus proceso bei jo mažiausių kvadratų liekanų. Inovacijos yra nepriklausomi, vienodai pasiskirstę ir bent kvadratu integruojami atsitiktiniai dydžiai su nuliniu vidurkiu. Įrodomos funkcinės ribinės teoremos šiems laužčių procesams Hiolderio erdvėje. Nagrinėjami du beveik nestacionaraus proceso atvejai. Vienu atveju įrodoma, kad ribinis procesas priklauso nuo Ornsteino–Uhlenbecko proceso. Kitu atveju, įrodomas konvergavimas į Brauno judesį Hiolderio erdvėje, atsižvelgiant į koeficiento divergavimo greitį bei inovacijų integruojamumą. Toliau nagrinėjamas epideminio pasikeitimo modelis beveik nestacionaraus pirmos eilės autoregresinio proceso inovacijoms. Nagrinėjami du modeliai. Iš stebėjimų bei liekanų konstruojama tolydžiųjų prieaugių alpha-Hiolderio statistika. Remiantis prielaidomis inovacijoms, randama statistikos ribinis procesas prie nulinės hipotezės, suderinamumo sąlygos, atliekama galios analizė.
|
3 |
Beveik nestacionarių procesų asimptotiniai rezultatai / Asymptotic results on nearly nonstationary processesMarkevičiūtė, Jurgita 29 October 2013 (has links)
Disertacijoje nagrinėjami dalinių sumų laužčių procesai sudaryti iš pirmos eilės beveik nestacionaraus proceso bei jo mažiausių kvadratų liekanų. Inovacijos yra nepriklausomi, vienodai pasiskirstę ir bent kvadratu integruojami atsitiktiniai dydžiai su nuliniu vidurkiu. Įrodomos funkcinės ribinės teoremos šiems laužčių procesams Hiolderio erdvėje. Nagrinėjami du beveik nestacionaraus proceso atvejai. Vienu atveju įrodoma, kad ribinis procesas priklauso nuo Ornsteino–Uhlenbecko proceso. Kitu atveju, įrodomas konvergavimas į Brauno judesį Hiolderio erdvėje, atsižvelgiant į koeficiento divergavimo greitį bei inovacijų integruojamumą. Toliau nagrinėjamas epideminio pasikeitimo modelis beveik nestacionaraus pirmos eilės autoregresinio proceso inovacijoms. Nagrinėjami du modeliai. Iš stebėjimų bei liekanų konstruojama tolydžiųjų prieaugių alpha-Hiolderio statistika. Remiantis prielaidomis inovacijoms, randama statistikos ribinis procesas prie nulinės hipotezės, suderinamumo sąlygos, atliekama galios analizė. / We study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process and its least squares residuals Innovations are i.i.d. centered and at least square-integrable innovations. Two types of models are considered. For the first type model we prove that the limiting process depends on Ornstein – Uhlenbeck one. In the second type model, the convergence to Brownian motion is established in Hölder space in terms of the rate of coefficient and the integrability of the residuals. We also investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process . We build the alpha-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis.
|
4 |
Dvejetainių atsatatymo procesų ribinės teoremos / Limit Theorems for Alternating Renewal ProcessesDaškevičius, Jaroslavas 23 July 2012 (has links)
Baigiamajame magistro darbe gautos dvejetainių atstatymo procesų sumų konvergavimo į Puasono procesą sąlygos. Remiamasi Grigelionio teorema, nusakančia nepriklausomų taškinių procesų sumų konvergavimo sąlygas. Analizuojami atvejai, kai sumuojamų dvejetainių atstatymo procesų veikimo ir atstatymo periodai yra nepriklausomi ir pasiskirstę pagal tolygųjį, eksponentinį, geometrinį ir Erlango dėsnius. Taip pat nagrinėjamas atvejis, kai veikimo ir atstatymo laikotarpiai turi skirtingus skirstinius. Kiekvienu atveju gautos ir įrodytos būtinos ir pakankamos sąlygos. Remiantis teoriniais rezultatais, procesai yra modeliuojami ir lyginami. Darbo pabaigoje yra suformuluojamos išvados. / In this master thesis conditions for convergence of sums of alternating renewal processes to Poisson process is obtained. Thesis is based on Grigelionis theorem, which defines conditions for convergence of sums of independent counting processes. More specific cases, when alternating renewal processes life and recovery periods are independent and have uniform, exponential, geometric and Erlang distributions, are examined too. Also, case when life and recovery periods have different distributions is examined. Necessary and sufficient conditions are formulated and proven for each case. Processes are modeled and compared according to theoretical results. In the end of thesis conclusions are made.
|
Page generated in 0.0647 seconds